
AN EXPLORATORY EXAMINATION OF SOFTWARE VULNERABILITY
CLASSIFICATION USING LARGE LANGUAGE MODELS

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE
UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

MAY 2024

By

Ana Oliveira Araujo

Thesis Committee:

Dr. Anthony Peruma, Chairperson
Dr. Mehdi Tarrit Mirakhorli

Dr. Rick Kazman

Keywords: cybersecurity, software vulnerability, CVE, VDO, vulnerability classification,
LLMs.

ABSTRACT

Software vulnerabilities are critical weaknesses that can compromise the security of a system. While

current research primarily focuses on automating the classification and detection of them using a

range of machine learning models, there remains a notable gap in integrating ontologies like the

Vulnerability Description Ontology with Large Language Models (LLMs) for enhanced classification

accuracy. Our study utilizes the National Vulnerability Database (NVD) and the National Institute

of Standards and Technology’s Vulnerability Description Ontology framework to enhance the clas-

sification of these vulnerabilities. The methodology involves an in-depth analysis of NVD data and

an investigation of the effectiveness of various LLMs to analyze vulnerability descriptions across

27 vulnerability categories in 5 noun groups. Our findings reveal that LLMs, particularly BERT

and DistilBERT, demonstrate stronger performance when compared to traditional machine learn-

ing models and entropy-based methods. Moreover, while expanding the dataset aims to capture a

broader range of vulnerabilities, its effectiveness varies, highlighting the crucial role of annotation

quality. This research emphasizes the importance of advanced machine learning techniques and

quality data annotation in optimizing vulnerability assessment processes in cybersecurity.

ii

TABLE OF CONTENTS

Abstract . ii
List of Tables . v
List of Figures . vi
1 Introduction . 1
2 Background . 4

2.1 Security Vulnerabilities . 4
2.2 National Vulnerability Database (NVD) . 4
2.3 Vulnerability Description Ontology (VDO) . 5
2.4 Language Models . 6

2.4.1 BERT (2018) . 6
2.4.2 DistilBERT (2019) . 8
2.4.3 XLNet (2019) . 8
2.4.4 DeBERTa V3 (2021) . 9
2.4.5 Llama 2 (2023) . 9

3 Literature Review . 11
3.1 Manual Annotation of Software Vulnerabilities . 11
3.2 Machine Learning Models . 13

3.2.1 Conventional . 13
3.2.2 Deep Learning . 14
3.2.3 Transformers . 16

4 methodology . 19
4.1 Data Source . 20

4.1.1 Data Retrieval . 20
4.2 Data Annotation . 20

4.2.1 Annotation Sessions . 21
4.2.2 Inter-Rater Agreement . 22
4.2.3 Resolution of Annotation Discrepancies . 23

4.3 Model Development . 23
4.3.1 Train/Test Split . 23
4.3.2 Preprocessing . 24
4.3.3 Fine-tuning . 25

4.4 Evaluation Metrics . 31
5 Results . 33

5.1 RQ1: Does the expansion of the dataset lead to enhanced performance in vulnera-
bility classification by large language models? . 33

5.2 RQ2: How do large language models impact the effectiveness of software vulnerability
classification? . 38
5.2.1 RQ1.1: How do models perform when classifying 27 vulnerability attributes? 40
5.2.2 RQ1.2: Which models have the best average f1 score across 27 vulnerability

attributes? . 43
5.3 RQ3: What are the prevalent n-grams associated with each vulnerability attribute? 44

iii

6 Threats to Validity . 51
7 Conclusion . 53
Bibliography . 54

iv

LIST OF TABLES

2.1 Vulnerability attribute domains (noun groups) in the VDO framework examined in
this study. 10

3.1 A survey of methods for the curation, prediction, and classification of software vul-
nerabilities. 18

4.1 CVEs labeled for two classes in the Mitigation noun group, i.e., HPKP/HSTS (HTTP
Public Key Pinning and HTTP Strict Transport Security) and Multi-Factor Authen-
tication (MFA). 21

4.2 MASI scores for each noun group by three annotators. 23
4.3 Original research versus current study annotations. 24
4.4 Optimal hyperparameters for BERT, DistilBERT, XLNet, Deberta V3. 29
4.5 Optimal hyperparameters Llama 2. 30

5.1 F1-score values for each attribute using combined dataset. 34
5.2 F1-score values for each attribute using only Okutan’s original dataset. 35
5.3 Okutan’s F1-score values using entropy-based methods and conventional machine

learning models. 39
5.4 Top 3 prevalent n-grams in Attack Theater noun group categories. 45
5.5 Top 3 prevalent n-grams in Context noun group categories. 46
5.6 Top 3 prevalent n-grams in Impact Method noun group categories. 47
5.7 Top 3 prevalent n-grams in Logical Impact noun group categories. 48
5.8 Top 3 prevalent n-grams in Mitigation noun group categories. 49

v

LIST OF FIGURES

2.1 CVEs critical details employed by the National Vulnerability Dataset, e.g., CVE-
2023-52473. 5

4.1 An illustration of the proof of concept that is designed to examine the applicability
of CVE descriptions classification. 19

4.2 Number of parameters and development years of models employed in the research. . 25
4.3 Multi-class Softmax function using Attack Theater noun group as an example. . . . 26
4.4 Multi-label Sigmoid function using Mitigation noun group as an example. 27
4.5 BERT model loss plot for the Logical Impact category using the combined dataset. . 28
4.6 BERT model loss plot for the Logical Impact category using only Okutan’s dataset. 28

vi

CHAPTER 1
INTRODUCTION

Advancements in technology have transformed operations across numerous industries, bringing

substantial benefits but also introducing new risks. As organizations increasingly depend on digital

solutions, the importance of safeguarding these systems has become fundamental. One of the most

pressing issues in this context is the prevalence of software vulnerabilities. These vulnerabilities

are not mere glitches; they are significant weaknesses that, if exploited by malicious agents, can

allow unauthorized access to or modification of sensitive data. This exploitation can compromise

the integrity, availability, and confidentiality of information, leading to severe security risks with

potentially extensive economic and reputational consequences.

For instance, in November 2023, Romanian cybersecurity firm Bitdefender uncovered multiple

vulnerabilities in LG webOS that powers its smart televisions. These vulnerabilities, identified

as CVE-2023-6317 through CVE-2023-6320, allowed attackers to bypass authorization mechanisms

and gain root access on the devices. One of the flaws (CVE-2023-6318) enabled attackers to escalate

their privileges, potentially taking full control of the TV. Another vulnerability (CVE-2023-6319)

involved operating system command injection through a component managing music lyrics, while

CVE-2023-6320 allowed the injection of authenticated commands through a specific API endpoint.

Such exploitation could give threat actors unprecedented control over the TVs without any user

interaction, posing significant privacy and security risks. These vulnerabilities were subsequently

patched by LG in a series of updates released on March 22, 2024 [28].

In recent years, the prevalence of software vulnerabilities have escalated, underscoring the criti-

cal need for effective management and analysis of these threats. Effectively classifying and managing

vulnerabilities can significantly diminish the risk of attacks and potential damage to systems. For

this reason, there has been a significant rise in the use of empirical methods to analyze and predict

vulnerable components. These efforts primarily focus on addressing the following questions: can

we predict software vulnerabilities, classify their types, and assess their severity?

However, if our data sources fail to fully capture the phenomenon of interest, our predictions

may excel within the confines of our data but prove unsatisfactory in practice. Typically, researchers

rely on public vulnerability databases like CVE or NVD, or vendor-specific databases, sometimes

combining both. These databases employ manual processes to analyze vulnerabilities, reviewing

text-based reports, advisories, and patch details. Nevertheless, it becomes time-consuming given the

substantial number of vulnerabilities published annually. Consequently, this intensive process has

led to issues regarding the quality of vulnerability reports, with studies indicating incompleteness

and inconsistencies Ozmet [31].

Fortunately, recent advancements in machine learning offer potential solutions to automate vul-

nerability classification. For instance, studies by Russo [34], Gonzalez[14], and Okutan [29] have

1

showcased the effectiveness of employing various machine learning classifiers to automatically char-

acterize software vulnerabilities based on CVE descriptions. Additionally, deep learning models,

such as Huang’s [18] TFI-DNN model, integrating Information Gain and Deep Neural Networks,

have demonstrated superior performance over traditional methods in vulnerability detection and

classification.

While these machine learning approaches have shown promise, the transformer-based approach

also holds significant potential in vulnerability detection and classification, as seen in Steenhoek

[36], Chandra [37], Gao [13], Fu [12], Omar [30].

This paper explores the application of large language models (LLMs) to the task of software vul-

nerability classification. Our approach utilize various Transformer architectures including BERT,

DistilBERT, XLNet, DEBERTA V3, and LLAMA 2 to classify attribute characteristics based on

the Vulnerability Description Ontology (VDO)established by the National Institute of Standards

and Technology (NIST) Booth [4]. The study is structured around three primary research ques-

tions that aim to dissect model and data expansion effectiveness, and linguistic features relevant

to vulnerability classification using LLMs.

Research Questions:

• RQ1: Does the expansion of the dataset lead to enhanced performance in vulner-

ability classification by large language models? The first question addresses whether

extending the data can lead to stronger models capable of categorizing a wider array of

vulnerability types.

• RQ2: How do large language models impact the effectiveness of software vulner-

ability classification? The second question seeks to evaluate the performance of LLMs in

the software vulnerability classification domain. It encompasses two sub-questions:

– RQ2.1: How do models perform when classifying 27 vulnerability attributes?

This sub-question aims to compare the different models, transform-based vs. traditional,

in accurately classifying software vulnerability attributes.

– RQ2.2: Which models have the best average f1 score across 27 vulnerability

attributes? This sub-question aims to identify which individual models demonstrate

the greatest overall effectiveness.

• RQ3: What are the prevalent n-grams associated with each vulnerability at-

tribute? The third question shifts focus to the linguistic aspects, exploring the specific

n-grams that are most prevalent and potentially indicative of different types of software vul-

nerabilities.

2

Contributions:

This research work contributes to the field of cybersecurity and machine learning by providing

empirical evidence on the capabilities of large language models (LLMs) in enhancing software

vulnerability classification. It systematically evaluates the capacity of LLMs and compares their

effectiveness against traditional models. Additionally, it explores the impact of data extension

on model performance and identifies key linguistic features used by these models. The findings

offer valuable insights for security professionals, indicating that LLMs can lead to more accurate

assessments and reduce response time for mitigation strategies. To support further research and

replication of the results, the source code and annotated data used in this study are made available

on GitHub [2]. Moreover, the research underscores the importance of quality control in data

annotation, highlighting its significance in improving model performance.

The paper’s structure is as follows: Section II offers an explanation of the Vulnerability De-

scription Ontology, the National Vulnerability Database, and transformer-based models. Section

III gives an overview of related work in the field. Section IV gives a detailed presentation of our

proposed vulnerability classification methodology, including the process of data annotation, rele-

vant algorithms and performance metrics. Section V presents the experimental results, and Section

VI addresses the threats of validity. Finally, Section VII concludes the paper.

3

CHAPTER 2
BACKGROUND

2.1 Security Vulnerabilities

In the domain of cybersecurity, a security vulnerability is formally described as a flaw or weakness

present in software that allows for potential exploitation by attackers to gain unauthorized access to

a system or network, as per the definition provided by the Common Vulnerability Exposures (CVE)

terminology Booth [3]. These vulnerabilities typically manifest as unexpected software behaviors or

as a result of inadequate security measures. Due to the high risk associated with such vulnerabilities,

they are deemed to be of great importance, with their identification and remediation often taking

precedence over other software deficiencies. In response to the discovery of vulnerabilities, software

vendors are compelled to issue a release of patches or new software versions to mitigate the risks

and minimize the potential impact.

2.2 National Vulnerability Database (NVD)

To facilitate the dissemination of information regarding security vulnerabilities and to support the

development of secure software, such vulnerabilities are reported in databases that are accessible

to the public. A preeminent example of such a repository is the National Vulnerability Database

(NVD) Booth [3], which was introduced by the National Institute of Standards and Technology

(NIST) with the intention of promoting secure software development practices, as well as to stream-

line the public disclosure and management of software vulnerabilities.

The NVD is an reliable repository that has been comprehensively recording software vulnerabil-

ities since 2001. The scope of the NVD encompasses a diverse array of 36,436 products, spanning

categories such as applications, operating systems, and hardware Booth [3]. Fundamentally, the

NVD is predicated on the CVE List — a collection that enumerates vulnerabilities, each entry

comprising a unique identifier, a description, and at least one publicly accessible reference. This

identifier, known as the Common Vulnerability Exposures (CVE) number or ID, serves as a stan-

dardized reference point for every publicly disclosed vulnerability.

The NVD augments the CVE entries with additional critical details such as the quantified

severity, encapsulated in the Common Vulnerability Scoring System (CVSS), and the categorical

type, referred to as the Common Weakness Enumeration (CWE) as illustrated in Fig. 2.1. Each

entry in the database is evaluated using the Common Vulnerability Scoring System (CVSS), which

is a standardized framework for rating the severity of security vulnerabilities. The CVSS allocates

scores based on a set of criteria that includes Access Complexity, Authentication, Access Vector,

Confidentiality Impact, Integrity Impact, and Availability Impact. These criteria are merged to

4

derive the Impact, Exploitability, and Base Scores, providing a quantifiable measure of vulnerability

severity. Despite its expansive coverage, it is worthy to mention that the NVD does contain a

minimal margin of error in its records Ozmet [31].

Figure 2.1: CVEs critical details employed by the National Vulnerability Dataset, e.g., CVE-2023-
52473.

2.3 Vulnerability Description Ontology (VDO)

Understanding the nature of software vulnerabilities facilitates the identification of foundational

issues, enables a comprehensive assessment of potential consequences, and guides the development of

mitigation strategies. In support of this effort, the National Institute of Standards and Technology

(NIST) has introduced a standardized Vulnerability Description Ontology (VDO) to aid in the

process of characterization of software vulnerabilities [4]. In this study, we analyzed five noun

groups from the Vulnerability Description Ontology (VDO). The selection of these noun groups

— Attack Theater, Context, Impact Method, Logical Impact, and Mitigation — was grounded in

5

their relevance to the comprehensive characterization of vulnerabilities and their significance within

cybersecurity research.

This investigation contributes to the existing body of knowledge by offering a detailed overview

of the VDO’s utility in CVE analysis, as presented in Table 2.3. This framework not only enhances

the theoretical understanding of vulnerabilities but also serves as a practical guide for developing

effective cybersecurity measures. For example, the noun group Attack Theater points to potential

locations for cybersecurity breaches. Context emphasizes the environments or circumstances where

the impacts of vulnerabilities manifest. Through Impact Method, we examine the array of tactics

that attackers might deploy. Logical Impact provides insight into the possible consequences of

attacks. Meanwhile, Mitigation focuses on strategies to either prevent or lessen the effects of

successful exploits.

2.4 Language Models

Language models (LMs) serve as foundational tools for a wide array of tasks in natural language

processing (NLP), including but not limited to machine translation, sentiment analysis, question

answering, and text summarization. The paper ”Attention is All You Need” by Vaswani [39]

introduced the Transformer model, revolutionizing the way language models process and understand

text through self-attention mechanisms.

2.4.1 BERT (2018)

The introduction of BERT, which stands for Bidirectional Encoder Representations from Trans-

formers, in 2018, paved the way for a profound transformation in the realm of language represen-

tation models. According to Devlin [11], this method conditions on both left and right contexts

across all layers through the use of bidirectional self-attention. The traditional language models

prior to BERT missed out on utilizing the context available on both sides of a word. This in-

herent limitation reduces their linguistic comprehension, failing to encapsulate context, integral to

understanding natural language.

The BERT model, and much of Language Models, undergoes a two-step process: pre-training

and fine-tuning. In the pre-training phase, BERT is pre-trained on a large corpus of unlabeled

text across various tasks, allowing it to learn universal language patterns. In the fine-tuning phase,

BERT adapts to specific tasks by fine-tuning its pre-trained parameters with task-specific labeled

data. This customization allows for the creation of models tailored to a variety of tasks, such as

sentiment analysis or entity recognition, without altering the foundational pre-trained parameters.

This advancement not only facilitates a seamless transition from pre-training to fine-tuning without

the need for major task-specific architectural changes, but also ensures the preservation of the

model’s language comprehension for an array of tasks, including text classification.

6

The pre-training involves two novel objectives: the masked language model (MLM) and the

next sentence prediction (NSP). Specifically, the MLM task improves the model’s contextual un-

derstanding by predicting randomly masked tokens based solely on their context, while the NSP

task enhances its ability to discern relationships between sentences. This phase doesn’t rely on task-

specific data, enabling the model to generalize across a broad spectrum of language understanding

tasks.

• Masked Language Model (MLM): The MLM approach aims to create a bidirectional com-

prehension of text by randomly masking certain input tokens and subsequently predicting

these obscured tokens. In practice, it randomly obscures 15% of the WordPiece tokens in a

sequence. For a selected token:

– 80% of the time, it is replaced with the [MASK] token to obscure it directly.

– 10% of the time, it is replaced with a random token, introducing noise and forcing the

model to improve its contextual understanding.

– The remaining 10% of the time, the token is left as it is, ensuring the model can still

predict correctly even without any masking.

Consider the phrase “The cat sat on the mat.” If “sat” is chosen for masking, the model

engages in three potential alterations:

– In 80% of instances, it transforms to “The cat [MASK] on the mat,” concealing the

specific action.

– There’s a 10% chance it might change to “The cat danced on the mat,” substituting

“sat” with an unrelated verb.

– The remaining 10% possibility leaves the sentence unaltered as “The cat sat on the mat,”

to ensure the model can predict the original word even without modifications.

• Next Sentence Prediction (NSP): As noted by Devlin [11], prior to BERT, traditional language

models felt short in capturing the interplay between sentences. To bridge this gap, the NSP

task, evaluates the model’s ability to predict whether a given sentence B logically follows

another sentence A. During pre-training, for every pair of sentences selected, there’s an equal

probability that sentence B either directly follows A or is a randomly chosen sentence from

the dataset, labeled correspondingly as IsNext or NotNext.

Example: In a scenario where sentence A states “The sky is clear today,” and sentence B is

“We should go to the beach,” the model, leveraging NSP, determines the logical progression

between these sentences as IsNext. Conversely, if sentence B were “Elephants are the largest

land animals,” the model identifies the lack of coherence, tagging the pair as NotNext.

7

2.4.2 DistilBERT (2019)

Following the breakthrough of BERT, subsequent models sought to refine and expand upon these

foundational techniques. DistilBERT (2019) [35], which is a distilled version of the BERT model,

streamlined architecture simplifies BERT by omitting token-type embeddings and the pooler and

halving the number of layers. It optimized the process by distilling BERT’s capabilities into a

smaller, more efficient model, thereby making advanced NLP technologies more accessible for real-

world applications with limited computational resources. It manages to reduce the original BERT

model’s size by 40% and increase processing speed by 60%, all while retaining 97% of BERT’s

language understanding performance. Such models facilitate broader adoption by easing the com-

putational load for training and inference.

2.4.3 XLNet (2019)

XLNet (2019) [42] innovated further by integrating the best aspects of autoregressive (AR) language

modeling and autoencoding (AE), eliminating the limitations of BERT’s MLM approach through

permutation-based language modeling. This enhanced the model’s ability to understand complex

language patterns and contexts without relying on data corruption techniques. This is achieved

through two ways:

1. Firstly, unlike conventional AR models that follow a fixed sequence for factorization, XL-

Net dynamically maximizes the expected log likelihood across all possible permutations of

a sequence. This strategy enables each token to be contextualized using information from

both preceding and succeeding tokens, thereby capturing context without the need for data

corruption techniques like those used in BERT.

2. Secondly, XLNet’s avoidance of data corruption means it does not suffer from the pre-train and

finetuning discrepancy that plagues BERT, where artificial [MASK] tokens used during pre-

training are absent during fine-tuning . Instead, XLNet employs an autoregressive mechanism

to predict each token, thus respecting the joint probability of the sequence and eliminating

the simplifying assumption of token independence inherent in BERT’s approach.

In terms of the architecture, XLNet incorporates significant innovations from Transformer-XL,

particularly the segment recurrence mechanism and relative positional encodings. Furthermore, it

is tailored to model multiple segments in a coherent manner, mirroring BERT’s handling of paired

sequences but within an AR framework. XLNet has demonstrated superior performance compared

to BERT [11] and ROBERTA [25] across a wide array of benchmarks, including question answering,

sentiment analysis, and document ranking, according to Yang [42].

8

2.4.4 DeBERTa V3 (2021)

DeBERTa improves upon the traditional BERT model by introducing two innovative components:

Disentangled Attention (DA) and an enhanced mask decoder. According to He [17], the DA mech-

anism uses two separate vectors for the content and position of each input word, enabling more

precise attention weight computations based on both content and relative positions. DeBERTa also

employs an enhanced mask decoder during its pre-training phase, which incorporates absolute po-

sition information to improve the effectiveness of masked language modeling (MLM). DeBERTaV3

(2021) [16] then combined the strengths of DeBERTa’s disentangled attention with ELECTRA’s

[9] efficient RTD training method, further enhancing model performance with the introduction

of Gradient-Disentangled Embedding Sharing (GDES). The experiments shows that DeBERTaV3

base with GDES outperforms state-of-the-art models up to 2021 - BERT, RoBERTA, XLNet,

ELECTRA, DeBERTa, across a variety of natural language understanding tasks.

2.4.5 Llama 2 (2023)

In 2023, the evolution reached a new height with the introduction of Llama 2 [38]. Llama 2 distin-

guishes itself through advanced training strategies, such as leveraging more diverse and extensive

datasets, which enrich its understanding of language nuances across various domains. Its archi-

tectural innovations provide enhanced processing of long-range dependencies, making it adept at

comprehending and generating more coherent text. Moreover, Llama 2 implements more efficient

attention mechanisms and optimization techniques, improving both the speed and accuracy of the

model while reducing computational resource requirements.

9

Noun Group Category Definition

Attack Theater Remote Initiates attacks through network connections external to the
target’s local network, primarily via the Internet.

Local Requires attacker’s logical access to the device through inter-
faces like console, RDP, SSH.

Limited Remote Conducts attacks over layer 2 or 3 technologies, constrained by
network communication or distance, e.g., Cellular, Wireless.

Physical Demands attacker’s physical presence at the device’s location
for execution.

Context Application Software developed to perform specific tasks, capable of running
across operating systems, firmware, or within other applications.

Hypervisor Manages hardware resources for multiple operating systems, al-
lowing each to operate with its own virtual resources while en-
suring isolation and efficient resource allocation.

Firmware Built-in software embedded within devices like routers, firewalls,
and BIOS/UEFI, providing fundamental operational instruc-
tions.

Physical Hardware Constitutes the tangible components of technology, including
processor logic gates, disk sectors, or memory cells.

Channel Facilitates logical communication between entities, relevant in
cases of inherent protocol or cipher suite flaws, like insufficient
entropy.

Host OS Serves as the primary operating system, supporting software ap-
plications, applicable outside the hypervisor context; contrasts
with Guest OS.

Guest OS Operates under a hypervisor, functioning as an isolated oper-
ating system for specific applications, used in contrast to Host
OS.

Impact Method Trust Failure Enables an attacker to bypass sandbox security, moving from a
restricted environment to another, exploiting trust mechanisms.

Context Escape Occurs when an exploit misuses assumed trust relationships,
leading to unintended consequences, such as verification failures
or trust assumption errors.

Authentication Bypass Allows attackers to gain access or permissions by failing to cor-
rectly identify them, undermining security measures.

Man-in-the-Middle Requires an attacker to intercept communications between two
parties, exploiting trust to manipulate or eavesdrop on the ex-
change.

Code Execution Permits attackers to run unauthorized code, affecting the in-
tended operational context and compromising system integrity.

Logical Impact Service Interrupt Enables attackers to disrupt service availability, either partially
or completely, without authorization.

Read Allows attackers to breach confidentiality through unauthorized
data access.

Write Enables attackers to compromise data integrity by unauthorized
modification or data addition.

Privilege Escalation Grants attackers higher access levels than intended, potentially
leading to comprehensive unauthorized actions.

Resource Removal Permits attackers to delete data without authorization, affecting
resource integrity.

Indirect Disclosure Allows attackers to indirectly learn information about the sys-
tem, utilizing methods that bypass direct data access.

Mitigation ASLR Implements Address Space Layout Randomization (ASLR) to
enhance security by randomizing memory addresses.

Multi-Factor Authentica-
tion

Requires Multi-Factor Authentication for access, adding a layer
of security beyond passwords.

Sandboxed Operates the product within a sandbox, isolating it from other
system components to limit potential breaches.

HPKP/HSTS Utilizes HTTP Public Key Pinning (HPKP) or HTTP Strict
Transport Security (HSTS) to secure web communications.

Physical Security Employs physical security measures to mitigate vulnerabilities,
protecting against unauthorized physical access.

Table 2.1: Vulnerability attribute domains (noun groups) in the VDO framework examined in this
study.

10

CHAPTER 3
LITERATURE REVIEW

Our literature review embarks on a comprehensive journey through the methodologies deployed

in the analysis and detection of software vulnerabilities, outlined in Table 3.1. It initiates with a

look at the manual curation process, underscored by the investigative work of Jimenez [19] and

Nguyen [26], which lays the groundwork by highlighting the critical importance of accurate data

collection and labeling. This segment transitions into a discussion on the broader spectrum of

machine learning techniques, showcasing how conventional methods have been applied to address

the intricacies of software vulnerabilities.

Following the exploration of traditional machine learning strategies, we delve into the realm of

deep learning (DL), where the focus shifts to more advanced, data-driven models capable of captur-

ing and analyzing complex patterns within vast datasets. The review culminates in an examination

of the transformative impact of transformer architectures, highlighting their groundbreaking con-

tributions to the field of vulnerability prediction.

Through this structured overview, we aim to navigate the significant advancements in the field,

from the foundational manual curation efforts to the cutting-edge implementations of deep learning

and transformers, setting the stage for a detailed discussion on each method’s contributions within

the broader context of cybersecurity research.

3.1 Manual Annotation of Software Vulnerabilities

The works of Jimenez [19] and Nguyen [26] provide a comprehensive overview of the challenges

and considerations inherent in the use of various data sources and predictive models for studying

software vulnerabilities. Jimenez [19] challenges the prevailing assumption of perfect labeling in

datasets. Their research, based on a dataset encompassing 1,898 real-world vulnerabilities from

projects like the Linux Kernel, OpenSSL, and Wireshark, demonstrates the stark contrast in model

effectiveness under realistic conditions. The results challenge the optimistic conclusions drawn from

models trained under the unrealistic assumption of perfect labeling, showing a significant drop in

predictive effectiveness when realistic labeling is considered.

Similarly, Nguyen’s [26] empirical analysis on the effectiveness of different data sources for

studying software vulnerabilities, particularly in Mozilla Firefox, sheds light on the critical aspect

of data reliability and completeness. They underscores the value of choosing the right dataset by

evaluating the information sourced from public vulnerability databases like the NVD, Mozilla’s own

advisories (MFSA), and Bugzilla reports. This choice directly impacts the quality of vulnerability

studies, highlighting the need for more accurate data collection methods to improve the predictive

capabilities of vulnerability models.

The critical insights provided by both Jimenez [19] and Nguyen [26] naturally segue into the

11

discussion on manual curation of software vulnerability datasets. The process of manually curating

data not only addresses the challenges highlighted in these studies but also serves as a critical step in

enhancing the accuracy and reliability of the datasets used for machine learning applications. This

section synthesizes the methodological approaches to manual curation documented by researchers,

exploring its fundamental role in the classification of software vulnerabilities.

Chen [8], Okutan [29], Gonzalez [14], Chen [7], Russo [34], and Zhou [44] collectively under-

score the importance of manual curation in enhancing the quality of vulnerability datasets. The

initial stage of manual curation involves the collection and review of potential vulnerability-related

information from a variety of sources, including Jira tickets, Bugzilla reports, open-source projects,

and CVE entries from the National Vulnerability Database (NVD). This extensive data gathering

effort aims to compile comprehensive information from open-source libraries and software, which

serves as the foundational dataset for subsequent analysis.

The rigor of the manual curation process is evident in the detailed labeling and annotation prac-

tices employed by researchers. For instance, Chen [8] describe a scenario where security researchers

carefully review collected data to label them as either vulnerability-related or not. Similarly, Oku-

tan [29] elaborate on an annotation process designed to ensure high-quality data labeling, where

Common Vulnerabilities and Exposures (CVE) entries are assigned confidence scores by Subject

Matter Experts (SMEs). These scores reflect the experts’ certainty about the accuracy of the labels,

with further scrutiny applied to CVEs marked with low confidence scores through peer-discussion

sessions.

Gonzalez [14] manually curate a dataset of 365 vulnerability descriptions, each mapped to one

of 19 characteristics from the NIST Vulnerability Description Ontology (VDO). This dataset is

created through a peer review process, where numerous CVEs and their descriptions from the

NVD were evaluated. These CVE reports and their characteristics are then reviewed by two

security experts from the research group to ensure agreement with the labeling performed by

the original developers before being included in the manually curated training dataset. Different

from vulnerability descriptions, Zhou [44] utilized large-scale open-source C projects in their work

with Devign, where the data was manually labeled from four diverse datasets. These datasets

incorporated a variety of real source code complexities, aiming to overcome limitations of synthetic

code used in previous studies. Chen [7] manually review 1,128 vulnerability reports through the use

of the open card sorting method to categorize rejected and disputed CVEs, revealing the complexity

and depth of manual analysis required to accurately characterize vulnerabilities.

As the field advances, the integration of manual curation with automated tools represents an

evolving landscape, augmenting the precision and effectiveness of vulnerability management sys-

tems. In particular, the study by Russo [34] demonstrates the practical application of manual

curation in validating automated tools within vulnerability management. Their study involved a

manual review process utilizing a dataset of 3,369 CVE records, pre-labeled by industry experts

12

according to a specific vulnerability taxonomy, to validate the classification and summarization

capabilities of their tool, CVErizer. The tool demonstrated high accuracy in classifying vulnerabil-

ities and generating summaries deemed useful by cybersecurity experts. Furthermore, the research

included an end-to-end evaluation with cybersecurity students and professional security experts

to assess the usefulness of CVErizer-generated summaries in supporting vulnerability assessment

activities. Likewise, Okutan’s [29] system show the potential to evaluate vulnerabilities up to 95

hours faster than manual methods, characterize them with F-Measure values over 0.9, and achieve

up to 47% time savings in CVE classification efforts.

Through these examples, it is clear that manual curation is not merely a preliminary step but

a foundation of the vulnerability classification process. The expertise and judgment of security re-

searchers are indispensable in refining the datasets that feed into machine learning models, ensuring

that these models are built upon a foundation of accurately labeled and reviewed data.

3.2 Machine Learning Models

3.2.1 Conventional

Zhang [43] and Last [21] focus on predicting the time to the next vulnerability and vulnerability

discovery rates, respectively, using regression models and K-NN classification. The K-NN classi-

fication is utilized to select the most appropriate regression model for forecasting, based on time

series distance measurements. The results indicate challenges in achieving accurate forecasts due to

the smoothness of the underlying data, suggesting that the success of forecasting models depends

on consistent trends in vulnerability discovery rates. Zimmermann’s [45] utilize logistic regression

and SVMs to examine the predictability of software vulnerabilities in Windows Vista. The research

reveals that while classical software metrics can predict vulnerabilities with reasonable precision,

their recall rates are significantly low.

Russo [34], Gonzalez [14], and Okutan [29] utilize several machine learning classifiers for the

automated characterization of software vulnerabilities based on CVE descriptions. Innovatively,

Gonzalez [14] and Okutan [29] introduce a novel methodology using the NIST Vulnerability Descrip-

tion Ontology (VDO) framework. Okutan [29] goes further and employ Information-Theoretical

methods for feature extraction. It is conducted through context-aware feature extraction and

vectorization techniques, employing Term Frequency-Inverse Document Frequency (TF-IDF) and

n-grams to account for the context of terms within CVE descriptions. Russo [34] employ a suite

of algorithms including J48, BayesNet, NaiveBayes, Simple Logistic, and Random Forest, whereas

Gonzalez [14] and Okutan [29] employ Näıve Bayes, Decision Tree, Support Vector Machine (SVM),

AdaBoost-SVM, Random Forest, and a Majority Vote ensemble method combining predictions from

the individual classifiers. The SVM and Decision Tree classifiers emerged as the most effective ones

in accurately characterizing vulnerabilities based on textual descriptions from CVEs.

13

Parallel to these endeavors, Jimenez [19], Chen [8], and Madhushani [1] employ similar machine

learning techniques to predict and classify software vulnerabilities. Jimenez [19] and Madhushani [1]

utilize classifiers such as AdaBoost, J48, K-Nearest Neighbourhood, Logistic Regression, Random

Forest, Naive Bayes, Stochastic Gradient Descent and Linear Support Vector (SVC). Madhushani

[1] applies data mining techniques to predict future vulnerabilities’ weaknesses based on the Bugs

Framework from NIST. Results show the Linear SVC and Stochastic Gradient Descent models per-

forming exceptionally well with accuracies up to 99% for precision, recall, and F1-score. Chen’s [8]

work on automating the curation of vulnerability databases underscores the potential of integrating

complex machine learning models for enhanced vulnerability management. They word embedding

and a stacking ensemble of classifiers with logistic regression as the meta learner.

Wijayasekara [40] and Chen [7] explore the use of text mining techniques and apply a combi-

nation of Näıve Bayes, Decision Tree, SVC and Random Forest. Wijayasekara [40] use text mining

on bug reports from publicly available databases to identify Hidden Impact Bugs (HIBs), showing

that up to 88% of HIBs were correctly identified. While Chen [7] distinguish invalid CVE reports,

showcasing a promising performance with an AUC score over 0.8. The methodology used by both

demonstrates the promising applicability of text mining in the early detection of vulnerabilities.

Collectively, these studies illuminate the diverse approaches and challenges in employing ma-

chine learning for the classification and prediction of software vulnerabilities. From the utilization

of NVD data and advanced text mining techniques to the application of a wide range of machine

learning models, the research not only showcases the potential of these methodologies in enhancing

cybersecurity efforts but also highlights the need for further refinement and exploration of ad-

ditional data sources and machine learning techniques to improve the accuracy and efficiency of

vulnerability detection and classification.

3.2.2 Deep Learning

Central to this exploration is the deployment of deep learning models for the nuanced detection

of vulnerabilities within code. The integration of traditional feature extraction methods with deep

learning models, as exemplified by Huang’s [18] TFI-DNN model, marks a notable innovation in

the field. They focus on developing a deep learning model to automate the detection of software

vulnerabilities from source code by the TFI-DNN model, which integrates TF-IDF, Information

Gain (IG), and Deep Neural Networks (DNN). Feature extraction involves using TF-IDF for word

frequency and weight calculation, and IG for optimal feature word selection, before applying the

DNN for classification. The TFI-DNN model outperforms traditional machine learning models

like SVM, Naive Bayes, and KNN across multiple dimensions—accuracy, recall, precision, and F1-

score—showing significant improvements and validating the effectiveness of combining TF-IDF, IG,

and DNN for vulnerability classification.

Similarly, Williams [41] aims to develop a comprehensive framework for analyzing and predicting

14

software vulnerabilities using data mining techniques. It applies feature extraction methods such

as entity detection and TF-IDF for text analysis. The framework include the Topically Supervised

Evolution Model (TSEM) for identifying temporal patterns in vulnerability data, diffusion-based

storytelling for tracing the evolution of specific vulnerabilities, regression algorithms for predicting

future vulnerabilities, and a deep neural network (DNN) for classifying vulnerabilities based on

their features. The deep neural network (DNN) showcased high accuracy in classification tasks,

and the regression models provided reliable predictions for future vulnerabilities.

Further enriching the landscape, Han [15] presents a deep learning approach to predict the multi-

class severity level of software vulnerabilities based solely on their descriptions. The study employs

word embeddings and a shallow Convolutional Neural Network (CNN) to automatically extract

and utilize discriminative word and sentence features from vulnerability descriptions. The results

demonstrate that their CNN model, trained on data from the CVE Details website, significantly

outperforms baseline methods in predicting the severity levels of vulnerabilities as well as other

deep learning architectures. Mazuera [27] critically evaluate various machine learning approaches,

including deep and shallow learning techniques for software vulnerability detection. Their analysis

spans Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Random

Forest (RF) models, applied to both binary and multi-class classification tasks involving synthetic

and real-world code vulnerabilities. The study finds that the Random Forest model outperforms

deep learning models in terms of accuracy and F1 score, challenging the prevailing assumption of

deep learning’s superiority in this domain. This outcome emphasizes the importance of empirical

testing to determine the most effective machine learning strategies for security applications.

Addressing the challenge of real-world applicability, Chakraborty [6] critically examine the

performance of Deep Learning (DL) techniques in real-world software vulnerability prediction,

identifying a significant accuracy decline when models proven to be up to 95% accurate on curated

datasets are applied to real-world data, with a noted accuracy reduction of over 50%. Addressing

this gap, their study contrasts various models, including token-based approaches like BLSTM and

sophisticated graph-based techniques such as the Devign model, which utilizes Code Property

Graphs (CPG) for deeper semantic and syntactic analysis. The research significantly improves upon

traditional DL methodologies in precision and recall by incorporating real-world project data from

sources like Chromium and Debian and advancing towards more semantically aware models. This

shift not only highlights the necessity for realistic data collection and advanced model development

but also marks a considerable advancement in DL’s application to cybersecurity, challenging and

surpassing existing models with marked enhancements in model performance.

Futhermore, Steenhoek [36] inspects the capability of deep learning models in identifying soft-

ware vulnerabilities, using the Devign and MSR datasets enriched with pre-existing annotations for

software vulnerabilities. These datasets facilitate a comprehensive comparison across a spectrum

of machine learning models, such as Graph Neural Networks (GNNs), Recurrent Neural Networks

15

(RNNs), Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs),

and Transformers. This comparison aims to determine their efficacy in pinpointing various vulner-

ability types. The study meticulously examines the impact of dataset size and composition on the

performance of these models, revealing significant variability in their effectiveness. Certain models

excel in specific areas but do not maintain a consistent performance across all vulnerability types.

The comparative results shed light on the distinct advantages and limitations of each model in the

context of software vulnerability detection.

Zhen [24], [22], [23] series of papers focus on improving the precision of software vulnerabil-

ity detection with deep learning-based models using source code from C/C++ programs. Zhen

[24] present VulDeePecker, a deep learning system using Bidirectional Long Short-Term Memory

(BLSTM) neural network and focusing specifically on buffer errors (CWE-119) and resource man-

agement errors (CWE-399). VulDeePecker’s performance significantly surpasses that of traditional

static analysis tools and code similarity-based systems in terms of reducing false negatives while

maintaining reasonable false positives. While, Zhen [22] employ Bidirectional Gated Recurrent Unit

(BGRU) model, RNNs, Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs),

and shallow learning models. The BGRU model demonstrated superior performance in identifying

vulnerabilities, highlighted by the detection of 15 previously unreported vulnerabilities in four soft-

ware products. Zhen [23] leverages a novel dataset consisting of 157,692 vulnerability candidates

in LLVM intermediate code, of which 40,450 are labeled as vulnerable. It uses the VulDeeLocator

which shows an average improvement of 9.8% in F1-measure, 7.9% in false-positive rate, and 8.2%

in false-negative rate over state-of-the-art models. Additionally, it demonstrates a 4.2 times increase

in locating precision when tested on real-world software products. This suggests a substantial step

forward in the application of deep learning to software vulnerability detection and location.

3.2.3 Transformers

On another front, Fu [12], Chandra [37], and Gao [13] use more complex methods for the detection

of software vulnerabilities, such as transform-based models. Chandra [37] conduct a comprehensive

study on the efficacy of machine learning models for detecting vulnerabilities in C/C++ codebases,

employing two datasets VulDeePecker and SeVC. The study compared the performance of several

models, including traditional RNNs like BiLSTM and BiGRU, alongside advanced transformer-

based models such as BERT, GPT-2, CodeBERT, and DistilBERT. The analysis revealed that

transformer-based models, with a particular emphasis on GPT-2 Large and XL versions, signifi-

cantly outperformed RNN models in detecting software vulnerabilities, achieving higher scores in

precision, recall, and F1 metrics.

On a similar note, Omar [30] aims to enhance software vulnerability detection by introducing

a novel knowledge distillation (KD) technique. It utilizes public domain datasets, specifically

SARD, SeVC, Devign, and D2A, and employ GPT-2, CodeBERT, and LSTM, with a focus on

16

the application of the KD method. The results revealed that DistilVulBERT, a product of the

KD process, significantly outperformed the other models, achieving a remarkable score of 94.0%

on these datasets. This score underscores the effectiveness of integrating transformer-based models

with knowledge distillation for improved accuracy in identifying software vulnerabilities.

Fu [12] developed LineVul, a groundbreaking method for predicting software vulnerabilities at

the line level within C/C++ code using the Transformer architecture. Their work use CodeBERT,

Random Forest, IVDetect, Reveal, SySeRV, VulDeePecker, Devign. LineVul surpasses existing

models like IVDetect, Reveal, and VulDeePecker in accuracy and efficiency, achieving up to 379%

improvement in F1-measure for function-level predictions and 25% higher Top-10 Accuracy for

line-level predictions, setting a new benchmark for vulnerability detection methods. This approach

leverages the Big-Vul dataset, an extensive collection of over 188,000 C/C++ functions from 348

open-source GitHub projects, encompassing 91 Common Weakness Enumerations (CWEs) and

data from 2002 to 2019. The dataset was compiled through a detailed examination of the Common

Vulnerabilities and Exposures (CVE) database and GitHub repositories, resulting in a repository

of 3,754 code vulnerabilities.

Utilizing various Large Language Models, Gao [13] introduce VulBench, a benchmark designed

to assess the efficacy of Large Language Models (LLMs) in detecting software vulnerabilities. It

utilizes human-labeled data from diverse sources such as Capture-the-Flag challenges and datasets

like MAGMA, Devign, D2A, and Big-Vul. The study conducts a thorough analysis comparing 16

LLMs, including GPT-3.5, GPT-4, and various Llama2 models, against traditional deep learning

models and static analyzers. GPT-4 emerges as the top performer, demonstrating superior capa-

bility in binary and multi-class classification tasks with impressive F1 scores and precision. Those

researches highlights the remarkable potential of LLMs in advancing software security through

effective automated vulnerability detection.

17

Author Goal Databases Models

Chen [8]
Automate curation of software vulnerability
databases

Jira tickets, Bugzilla
reports, CVEs, emails,
GitHub issues and com-
mits.

Random Forest, Naive Bayes, KNN, Sup-
port Vector Machine, Gradient Boosting, Ad-
aBoost, Logistic Regression

Okutan [29]
Automated curation/characterization of soft-
ware vulnerabilities

NVD
SVM, Näıve Bayes, C4.5 Decision Tree, Ran-
dom Forest, Ensemble Learning

Gonzalez [14]
Automated characterization of software vul-
nerabilities based on CVE descriptions

NVD
Näıve Bayes, Decision Tree, Support Vec-
tor Machine, AdaBoost-SVM, Random For-
est, Majority Vote

Chen [7]
Identifying and predicting invalid CVE re-
ports

NVD
Naive Bayes, Multinomial Naive Bayes, SVM,
Random Forest

Russo [34]
Developing a tool designed to summarize and
categorize CVEs

NVD
J48, BayesNet, Naive Bayes, Simple Logistic,
RandomForest

Nguyen [26]
Evaluating data sources for software vulnera-
bilities in Mozilla Firefox

NVD, MFSA, Bugzilla

Jimenez [19]
Examination of the effectiveness of vulnera-
bility prediction models under realistic condi-
tions

Linux Kernel, OpenSSL,
Wireshark

AdaBoost, J48, KNN, Logistic Regression,
Random Forest

Williams [41]
Analyzing and predicting software vulnerabil-
ities using data mining techniques

NVD

TSEM, Linear Regression, Exponential-
Weighted Least-Squares Regression,
Logarithmic-Weighted Least-Squares Re-
gression, Cauchy Regression, DNN

Zimmermann [45]
Examiation of the predictability of software
vulnerabilities in Windows Vista

NVD Logistic Regression, Support Vector Machine

Last [21] Predicting future software vulnerabilities NVD
Linear Regression, Quadratic Regression,
KNN

Zhang [43]
Predicting the time to the next software vul-
nerability for software applications

NVD

Linear Regression, Least Median Square,
Multilayer Perceptron, Radial Basis Function
(RBF) Network, Sequential Minimal Opti-
mization (SMO) Regression, and Gaussian
Processes.

Han [15]
Predicting the multi-class severity level of
software vulnerabilities

CVE Shallow CNN

Huang [18]
Automating the detection of software vulner-
abilities from source code

NVD
TFI-DNN, Support Vector Machine, Naive
Bayes, KNN

Madhushani [1]
Classifying software vulnerabilities based on
Bugs Framework

NVD, CVE
Linear SVC, Random Forest, Multinomial
Naive Bayes, Logistic Regression, Naive
Bayes, Stochastic Gradient Descent

Wijayasekara [40]
Identifying Hidden Impact Bugs in software
using text mining

Redhat Bugzilla, CVE
Naive Bayes, Naive Bayes Multinomial, Deci-
sion Tree

Fu [12]
Fine-grained, line-level software vulnerability
prediction using Transformer architecture

Big-Vul
CodeBERT, Random Forest, IVDetect, Re-
veal, SySeRV, VulDeePecker, Devign

Gao [13]
Evaluating Large Language Models in vulner-
ability detection

Capture-the-Flag,
MAGMA, Devign, D2A,
Big-Vul

GPT, Llama-2, Vicuna, Baichuan, Internlm,
CodeLlama, Platypus2, Falcon-40, Chat-
GLM2

Zhou [44]
Identifying vulnerabilities in software using a
graph neural network model

Open-sourced C projects Graph Neural Network

Mazuera [27]
Testing efficacy of machine learning models
for detecting software vulnerabilities

SARD, NVD, GitHub
Archive Dataset (GH-DS).

CNNs, RNNs, Random Forest

Chakraborty [6]
Predicting software vulnerabilities under real-
world conditions

Chromium, Debian
BLSTM, Devign, CNN, RNN, VulDeePecker,
SySeVR

Chandra [37]
Identifying vulnerabilities in C/C++ code-
bases using machine learning models

VulDeePecker, SeVC
RNNs (BiLSTM, BiGRU), Transformer-
based models (BERT, GPT-2, CodeBERT,
DistilBERT)

Omar [30]
Enhancing software vulnerability detection
with knowledge distillation

SARD, SeVC, Devign, and
D2A

GPT-2, CodeBERT, LSTM

Li [24]
Detecting software vulnerabilities focusing on
buffer errors and resource management errors

NVD, SARD BLSTM

Li [22]
Detecting vulnerabilities in C/C++ pro-
grams using deep learning

NVD, SARD
Bidirectional RNNs (BGRU), RNN, CNNs,
DBNs

Li [23]
Improving precision of software vulnerability
detection through a deep learning model

LLVM VulDeeLocator

Steenhoek [36]
Evaluate the effectiveness of various deep
learning models for vulnerability detection
within software code

Devign, MSR
Devign, ReVeal, ReGVD, Code2Vec, Code-
BERT, VulBERTa-CNN, VulBERTa-MLP,
PLBART, and LineVul

Table 3.1: A survey of methods for the curation, prediction, and classification of software vulnera-
bilities.

18

CHAPTER 4
METHODOLOGY

Our research introduces an approach that leverages the power of transformers to train classifiers

capable of analyzing Common Vulnerabilities and Exposures (CVE) reports and inferring their

associated Vulnerability Description Ontology (VDO) characteristics. We hypothesize that the

lexicon utilized within CVE descriptions contains valuable indicators of these characteristics, and

through machine learning, classifiers can be trained to recognize these indicators from historical

data. Fig. 4.1 provides a general overview of our proof of concept for examining the applicability

of the proposed methodology.

Inter-Rater
Agreement

Data
Source

Feature
Extraction

Combine
Dataset

Annotator 2 Conflict
Resolution

Model Training
& Tuning

Train/Test
Split

Test
Prediction

Predicted
Label

Model
Performance

Annotator 3

Annotator 1

Figure 4.1: An illustration of the proof of concept that is designed to examine the applicability of
CVE descriptions classification.

In summary, we engage in a multi-stage process to validate our approach:

1. We create a labeled dataset through the manual curation of vulnerability descriptions corre-

sponding to each of the 27 VDO characteristics. In addition to that, we reuse the dataset

from Okutan [29] and merge it with ours.

2. Transform-based classifiers are trained using this dataset. The primary goal is to predict the

one or more classes for text descriptions within each of the five distinct noun groups. These

groups feature different classification schemes:

• Multi-class classification is used when a text description corresponds to a single label,

suitable for categories like Attack Theater, Context, and Impact Method noun groups.

In these groups, the classes are mutually exclusive.

19

• Multi-label classification applies to scenarios where a text description fits multiple cat-

egories, such as in Logical Impact and Mitigation noun groups. These descriptions may

fall into one or more classes. For instance, in the Logical Impact category, an attacker

with access to a user’s data could both read and write to it.

3. Finally, we compute a set of evaluation metrics to benchmark the classifiers’ performance.

4.1 Data Source

Research in software vulnerability detection employs a variety of datasets to enhance security

through machine learning, with the comprehensive National Vulnerability Database (NVD) being

a focal point for many studies. This database supports a wide range of research objectives, including

automated vulnerability classification, future vulnerability prediction, and severity score prediction.

In particular, the NVD has underpinned the work of numerous researchers such as Zhang [43],

Zimmermann [45], Last [21], and others, showcasing its extensive utility across the field.

In addition to the NVD, other critical datasets include the Software Assurance Reference

Dataset (SARD), and specialized collections like Big-Vul or LLVM intermediate code dataset.

These datasets facilitate various research avenues, from severity prediction using CVE as seen in

Han [15], to exploring vulnerabilities in C/C++ programs with SARD and Big-Vul by Fu [12], and

automating database curation with a mix of Jira tickets, Bugzilla reports, and GitHub issues by

Chen [8]. Furthermore, Chakraborty [6] focus on real-world conditions using data from Chromium

and Debian, illustrating the diversity and significance of employing project-specific and proprietary

data in advancing the field of software vulnerability detection.

4.1.1 Data Retrieval

For the purpose of our research, we employ the National Vulnerability Database (NVD) as our

primary source of experimental data. The dataset represents the most complete and suitable

dataset compared to other available options. The dataset from the NVD is organized as a series

of JSON files, each file enumerating various attributes of the vulnerabilities such as the CVE

identifier, the release date, the CVSS version and score, the CVSS vector, and a descriptive text of

the vulnerability. The process involve querying the NVD Vulnerability Search Engine and extract

the CVE descriptions information from the years 2021 to 2023 utilizing Python scripts.

4.2 Data Annotation

The annotation phase marks a critical moment in our research, requiring both a high degree of ac-

curacy and an extensive understanding of cybersecurity frameworks. We strictly follow the rigorous

curation standards that Okutan [29] previously established throughout our dataset development.

20

Our approach features a focus on achieving uniformity across the dataset, which is accomplished

by adhering to a series of carefully devised steps by three student annotators:

4.2.1 Annotation Sessions

1. Understanding the Vulnerability Description Ontology (VDO): The first step requires anno-

tators to engage in a detailed review of the VDO framework and the dataset annotated by

five security specialists with extensive experience, as reported by Okutan [29].

2. Achieving Unanimity in Class Definitions: The second step requires annotators to participate

in discussions to ensure a unified understanding of the classes associated with each noun group.

3. Dataset Construction and Annotation: The step requires constructing the datasets for the

five distinct VDO noun groups. The annotators receive identical CVE descriptions and in-

dependently annotate them within each noun group. The CVE data points must include

labels along with a confidence score on a numerical scale ranging from one to three, where

a score of one indicated uncertainty, two denoted a moderate level of confidence, and three

reflected a high level of certainty in the labeling decision. This scoring system was designed

to discern high-confidence annotations from annotations that require a peer-review to reduce

speculative labeling.

CVE - ID Description HPKP/HSTS MFA

CVE-2019-6531 An attacker could retrieve passwords from a
HTTP GET request from the Kunbus
PR100088 Modbus gateway versions prior to
Release R02 (or Software Version 1113166) if the
attacker is in an MITM position .

x x

CVE-2019-18666 An issue was discovered on D-Link DAP-1360
revision F devices Remote attackers can start a
telnet service without authorization via an
undocumented HTTP request . Although this is
the primary vulnerability the impact depends on
the firmware version. Versions 609EU through
613EUbeta were tested, versions through 612b01
have weak root credentials allowing an attacker
to gain remote root access. After 612b01 the root
credentials were changed but the telnet service
can still be started without authorization.

x

Table 4.1: CVEs labeled for two classes in the Mitigation noun group, i.e., HPKP/HSTS (HTTP
Public Key Pinning and HTTP Strict Transport Security) and Multi-Factor Authentication (MFA).

21

The complexity of certain CVEs necessitate the assignment of multiple classes within a noun

group to accurately capture their multifaceted nature. In such cases, annotators were instructed

to apply all pertinent labels, ensuring comprehensive coverage of the CVE’s characteristics and

precision in our dataset. These multi-label instances are documented and exemplified in Table 4.1.

4.2.2 Inter-Rater Agreement

Inter-rater reliability is a critical component of data annotation, providing a measure of consistency

between independent annotators. Our approach is based on the principle that data become reliable

when annotators agree on how to categorize units of analysis. This principle is a well-established

concept in content analysis research, as noted by Krippendorff [20]. It underscores the importance

of inter-rater agreement for achieving trustworthy data.

To quantitatively assess the degree of agreement between annotators, we implemented the MASI

(Metric for Agreement with Set Intersection) score, which is a metric designed to measure the

agreement between two sets by evaluating the overlap of assigned labels. This metric is particu-

larly suited for annotations where multiple labels may be applicable to a single instance. MASI’s

flexibility allows it to remain agnostic to the probability distribution of annotations, enabling its

use alongside various weighted agreement metrics, such as the widely-recognized Krippendorff’s α

Passonneau [32]. The MASI scores for each noun group were calculated and are presented in Ta-

ble 4.2. These scores provide a statistical basis for assessing the consistency of annotations across

the three annotators.

α = 1− Do observed disagreement

De expected disagreement
(4.1)

Furthermore, Krippendorff’s α, as discussed in Carletta [5] offers a scale of agreement where

a score of zero indicates no agreement beyond chance, and a score of one represents complete

agreement. Specifically, Krippendorff outlines thresholds for acceptable levels of agreement based

on the intended use of the coding. For instance, it is generally challenging to establish correlations

between two variables if both are based on coding schemes where α is less than 0.7. Moreover,

content analysis researchers consider α values above 0.8 as indicative of strong reliability, whereas

values between 0.67 and 0.8 permit only tentative conclusions.

Our initial analysis across various noun groups yielded the following preliminary scores: Attack

Theater at 0.68, Context at 0.66, Mitigation at 0.76, Logical Impact at 0.77, and Impact Method at

0.74, with an overall average of 0.72. These preliminary results indicate that while some categories

are nearing the threshold for reliable conclusions, others remain in the range where only tenta-

tive conclusions can be drawn. Nevertheless, disagreements among annotators are subsequently

addressed to resolve discrepancies, aiming to enhance the reliability of the annotations.

22

Noun Group Alpha Rate (α)

Attack Theater 0.68
Context 0.66
Mitigation 0.76
Logical Impact 0.77
Impact Method 0.74

AVERAGE 0.72

Table 4.2: MASI scores for each noun group by three annotators.

4.2.3 Resolution of Annotation Discrepancies

A rigorous review process can significantly improve the data’s reliability and validity, which is

crucial for developing computational models. Post-annotation, all CVEs and associated confidence

scores were subjected to a peer review.

1. Confidence Score: Annotators flagged CVEs for further discussion and refined the dataset

until all entries achieved a confidence score of three.

2. Conflict Resolution: If there were disagreements between annotators in labeling a CVE, its

description and its characteristics were discussed in an attempt to resolve the conflict. If the

annotators were not able to reach a consensus, the CVE description was remove from the

dataset.

As a result, the newly annotated dataset reflects a consensus among annotators, providing a

scientifically valid foundation for our research into vulnerability classification. This step produced

our final dataset, which was then combined with the dataset from [29]. The detailed counts for

each class within each noun group are presented in Table 4.3. The table outlines the counts from

the dataset reused from [29], and the counts from the new dataset annotated by our team.

4.3 Model Development

4.3.1 Train/Test Split

The evaluation of the model’s effectiveness necessitates subjecting it to examination against a held-

out test set containing CVE descriptions with pre-determined classes. This standard approach is

essential for ensuring the accuracy and reliability of the model’s performance within the domain

of machine learning research. The dataset is divided into 80% for training and 20% for testing.

The stratified sampling techniques guarantees a well-balanced representation across diverse classes,

minimizing potential biases during evaluation process.

23

Noun Group Class Okutan et al. New Dataset Total Count

Attack Theater Remote 91 80 171
Local 75 87 162
Limited Remote 74 67 141
Physical 53 101 154

Context Application 156 75 231
Hypervisor 102 34 136
Firmware 103 69 172
Physical Hardware 129 59 188
Channel 103 73 176
Host OS 102 53 155
Guest OS 103 58 161

Impact Method Trust Failure 86 127 213
Context Escape 68 127 195
Authentication Bypass 111 110 221
Man-in-the-Middle 79 107 186
Code Execution 121 119 240

Logical Impact Service Interrupt 77 89 166
Read 116 107 223
Write 134 108 242
Privilege Escalation 70 92 162
Resource Removal 95 111 206
Indirect Disclosure 70 111 181

Mitigation ASLR 96 95 191
MFA 99 91 190
Sandboxed 88 92 180
HPKP/HSTS 92 104 196
Physical Security 99 87 186

Table 4.3: Original research versus current study annotations.

4.3.2 Preprocessing

In the preprocessing phase for this study, the initial step involves removing URLs from text de-

scriptions. This action is specific to the dataset, as URLs in the descriptions do not contribute to

the predictive modeling task. The presence of URLs could potentially introduce noise, given their

irregular structure and lack of relevant linguistic content for classification purposes.

Following the removal of URLs, the text undergoes tokenization, a process where it is dissected

into tokens—units representing words or subwords. This transformation shifts unstructured text

into a structured format, significantly enhancing the models’ ability to process and interpret the

data. Each model employs a specific tokenizer optimized for its architecture: BertTokenizer for

24

BERT, DistilBertTokenizer for DistilBERT, and AutoTokenizer for XLNet and DeBERTa, each

designed to accommodate their respective architectural variations. For example, BertTokenizer

utilizes the WordPiece algorithm to segment text into a mix of whole words and recognizable

subwords, efficiently addressing the challenge of a fixed vocabulary size [11]. In contrast, Au-

toTokenizer dynamically adapts its tokenization strategy to suit each model’s unique contextual

embedding methodologies.

Particularly, the preprocessing requirements for large language models like those selected for

this study, are inherently less demanding due to their extensive pre-training on diverse corpora.

This pre-training enables LLMs to effectively handle a variety of textual inputs with minimal pre-

processing, distinguishing them from models that might rely more heavily on specific preprocessing

steps to achieve optimal performance. Despite this, the decision to remove URLs prior to tokeniza-

tion is maintained across all models to ensure uniformity in the text input, aligning with the overall

aim of minimizing non-linguistic data that could reduce the models’ learning ability.

4.3.3 Fine-tuning

In this research work we use 5 transform-based models as illustrated in Fig. 4.2:

Figure 4.2: Number of parameters and development years of models employed in the research.

In 2018, BERT revolutionized transformer models by introducing bidirectional context analysis,

a significant advancement over previous transformers (Devlin [11]). This breakthrough set the stage

for subsequent innovations. In 2019, DistilBERT emerged with a focus on efficiency, maintaining

97% of BERT’s performance while reducing parameter size to 66 million, compared to BERT’s 110

million (Sanh [35]). Also in 2019, XLNet adopted a permutation-based approach, enhancing its

25

contextual understanding (Yang [42]). In 2021, DeBERTa V3 integrated disentangled attention and

an enhanced mask decoder, surpassing BERT and ELECTRA in performance. Finally, in 2023,

Llama 2 introduced a scalable architecture with billions of parameters, achieving excellence in tasks

like text summarization (Touvron [38]).

These models are fine-tuned on the dataset, employing sequence classification heads: XL-

NetForSequenceClassification, DistilBertForSequenceClassification, BertForSequenceClassification,

and DebertaForSequenceClassification. These classification heads are specialized layers attached

to the output of the transformer models, designed to interpret the representations produced by the

transformers’ encoders for the task at hand.

• Multi-class Classification: The CrossEntropyLoss function is employed for tasks requiring the

prediction of a single class in N classes, where N is bigger than 2. This loss function is partic-

ularly effective in scenarios where only one class is correct, encouraging the model to increase

the probability of the true class while decreasing that of all others. Specifically, CrossEn-

tropyLoss quantifies the difference between the predicted probability distribution across all

classes and the actual distribution, where the true class has a probability of 1 and all others

0. It utilizes a softmax function to convert the models’ logits into probabilities by comparing

the logits of all possible classes. Logits are raw non-normalized predictions generated by the

last layer of the network. This process effectively assigns each text description to a single,

most probable label Fig. 4.3.

-0.1

3.8

1.1

-0.3

0.02

0.91

0.06

0.01

Limited Remote

Remote

Physical

Local

Output Vector Probabilities

Softmax
Function

Figure 4.3: Multi-class Softmax function using Attack Theater noun group as an example.

• Multi-label Classification: Conversely, in multi-label classification scenarios, where text de-

scriptions may concurrently belong to multiple categories, BCEWithLogitsLoss (Binary Cross

Entropy with Logits Loss) is utilized. This function computes the binary cross-entropy loss

between the target and the input logits, effectively handling multiple labels by treating each

26

label as an independent Bernoulli distribution. These heads apply a sigmoid function to each

output logit independently. This approach allows for the assignment of probabilities to each

label independently, enabling the model to predict multiple labels for a single text instance

by considering each label as a separate binary classification problem Fig. 4.4.

0.95

0.96

0.12

0.02

0.30

ASRL
Yes or No

MFA
Yes or No

Sandboxed
Yes or No

HPKP/HSTS
Yes or No

Physical Security
Yes or No

Yes

Yes

No

No

Sigmoid Function
(a sigmoid per node)

Mutually
Inclusive

No

Figure 4.4: Multi-label Sigmoid function using Mitigation noun group as an example.

Llama 2 Prompt

The configuration of prompts was designed to support the model’s task of analyzing and classifying

software vulnerability descriptions. By specifying structured prompts, the model is trained to

accurately classify textual data into predefined categories such as ’Authentication Bypass,’ ’Code

Execution,’ and ’MitM.’ These prompts are integral to guiding the model through the task of

categorizing different types of vulnerabilities. An example of such a prompt is as follows:

Example Prompt

Analyze the software vulnerability description enclosed in square brackets, and

categorize it into one of the Impact Method classes: Authentication Bypass, Code

Execution, Context Escape, MitM, Trust Failure. Return the answer as the cor-

responding class label.

[Jenkins SmallTest Plugin 1.0.4 and earlier does not perform hostname validation

when connecting to the configured View26 server that could be abused using a

man-in-the-middle attack to intercept these connections.] = MitM.

27

Hyperparameter Tuning for BERT, DistilBERT, XLNet, DeBERTa V3

To optimize the fine-tuning of transformer-based models for label prediction tasks, a systematic

approach to hyperparameter tuning was undertaken, informed by machine learning principles and

empirical testing.

• Epochs: The models were trained for up to 30 epochs, with an early stopping mechanism

that uses a patience of three epochs based on test loss. This method is informed by the

observation that the test loss often plateaus well before reaching 30 epochs. As illustrated

in Fig. 4.5 and Fig. 4.6, early stopping is triggered when the test loss does not decrease

for three consecutive epochs, effectively preventing overtraining by halting further training

when additional epochs do not yield improvement in test loss. This approach ensures efficient

training by saving computational resources and potentially enhancing model generalizability

by avoiding overfitting to the training data.

Figure 4.5: BERT model loss plot for the Logical Impact category using the combined dataset.

Figure 4.6: BERT model loss plot for the Logical Impact category using only Okutan’s dataset.

• Optimizer : The Adam optimizer was selected for the optimization process since it is able to

navigate high-dimensional parameter spaces characteristic of transformer models, crucial for

learning complex patterns within the data.

28

• Learning Rate: Initial tests with a learning rate of 1e-4 revealed unstable learning dynamics,

as evidenced by sharp fluctuations in the loss function. A subsequent reduction to 2e-5

marginally improved stability but did not achieve optimal results. The final adjustment to a

learning rate of 1e-5 was determined based on its superior balance between learning efficiency

and stability, as lower learning rates generally promote gradual but consistent convergence in

deep learning models.

• Weight Decay : The weight decay parameter was set to 1e-5, complementing the chosen learn-

ing rate to foster stable learning progress. Alternative decay rates, including 0.1, 0.01, 0.001,

and 0.0001, were evaluated but resulted in inferior learning behavior. The selected decay

rate of 1e-5 is supported by its effectiveness in regularizing the model, mitigating the risk of

overfitting by penalizing larger weights. This choice is substantiated by the principle that

appropriate weight decay can enhance generalization in deep neural networks by encouraging

simpler models that perform well on unseen data.

• Maximum Sequence Length: Experimental trials with sequence lengths of 128 and 200 offered

no significant benefit over the baseline setting of 256. This parameter was carefully chosen

considering the typical length of text descriptions in the dataset, which rarely exceeded 300

words. A sequence length of 256 balances between encompassing the entirety of most descrip-

tions and maintaining computational efficiency. It acknowledges the practical observation

that while most descriptions are shorter than 110 words, a length of 256 accommodates the

full range of observed text lengths without unnecessary padding.

The fine-tuning configurations are consistent across all models for comparability, except for the

Llama2 model, which requires a unique setup detailed in Table 4.5. The optimal hyperparameters

for each model are shown in Table 4.4.

Hyperparameters Values

Epochs 30

Learning Rate 1e-5

Weight Decay 1e-5

Training Batch Size 16

Testing Batch Size 8

Maximum Sequence Length 256

Early Stopping Patience 3

Table 4.4: Optimal hyperparameters for BERT, DistilBERT, XLNet, Deberta V3.

29

Hyperparameter Tuning for LLaMA 2

• Epochs: Adjusting the number of training epochs was critical in avoiding overfitting while

ensuring sufficient learning. While 3 epochs led to overfitting, 1 epoch was inadequate for

the model to learn effectively. A balanced approach was achieved with 2 epochs, facilitating

adequate exposure to the training data without the adverse effects of overtraining.

• QLoRA Parameters: The configuration of QLoRA parameters started with a dimensional-

ity rank of 64 and a scaling factor alpha of 16, selected to optimize the model’s pattern

recognition capacity while maintaining computational efficiency. Trials involving variations

of rank and alpha (testing rank: 64 with alpha: 32, and the inverse) revealed that the original

configuration offered the best results.

• Learning Rate and Weight Decay : The initial rates of 1e-5 and 5e-5 led to underfitting, and a

higher rate of 1e-4 did not achieve the expected performance. A learning rate of 2e-4, coupled

with the Adam optimizer, was identified as the best value. Concurrently, a weight decay of

0.001 was chosen to minimize overfitting by penalizing larger weights, which helps maintain

steady learning progress. This approach proved more effective than a previously tested decay

rate of 0.01, which led to less favorable outcomes.

• Batch Size and Gradient Accumulation: The model’s training regimen included a per-device

training batch size of 1 and a gradient accumulation strategy spanning 8 steps. This approach

was designed to optimize computational resources, allowing for effective model updates and

handling of larger sequences without surpassing memory limits, a key consideration for models

with extensive parameter counts.

• Advanced Configurations: Implementations such as gradient checkpointing and mixed-precision

training (fp16) were strategic choices aimed at enhancing memory utilization and computa-

tional speed, essential for efficiently managing a model of this scale and complexity.

Hyperparameters Values

Alpha 16

Rank 64

Epochs 2

Learning Rate 2e-4

Weight Decay 1e-3

Maximum Sequence Length 512

Training Batch Size 1

Gradient Accumulation 8

Table 4.5: Optimal hyperparameters Llama 2.

30

4.4 Evaluation Metrics

To assess the performance of our classification model and facilitate comparisons with other al-

gorithms, it’s essential to use a unified set of evaluation criteria. In this study, we have chosen

precision, recall, and the F1-score, which are widely accepted metrics for evaluating the effective-

ness of classification models, as referenced in multiple studies [4], [6], [10].

To apply the binary classification metrics of precision, recall, and the F1-score to our multi-

class scenario, we calculate these metrics for each class as if it were a binary classification. We then

average the scores across all classes to derive a comprehensive measure of the model’s performance.

Before introducing the evaluation metrics utilized in this study, we establish the definitions of

several key terms:

• True Positive (TP) refers to instances where the model correctly predicts a sample as

belonging to a specific class.

• False Positive (FP) denotes instances where the model incorrectly predicts a sample as

belonging to a target class when it belongs to a different class.

• True Negative (TN) represents instances where the model correctly identifies a sample as

not belonging to the target class.

• False Negative (FN) occurs when the model fails to identify a sample as belonging to the

target class, classifying it under a different class instead.

Recall quantifies the model’s ability to correctly identify positive examples for a given class i.

It is the proportion of true positives in relation to the sum of true positives and false negatives

(FN), representing the model’s capacity to capture all relevant instances. The calculation formula

is below.

Recall =
TP

TP + FN
(4.2)

Precision evaluates the correctness of positive predictions for a given class i. It is the ratio of

true positives to the sum of true positives and false positives, reflecting the model’s precision in

classifying instances as positive. The calculation formula is below.

Precision =
TP

TP + FP
(4.3)

F1-score is the harmonic mean of precision and recall. For a given class i, the F1-score combines

these two metrics, providing a balance between precision and recall in a single measure. This is

particularly useful for comparing model performance across different class distributions. The F1-

score ranges between 0 and 1, where 1 indicates perfect precision and recall, and hence, perfect

31

classification performance for the given class. We employ the F1-score as the main evaluation

metric due to its balanced consideration of both precision and recall. The calculation formula is

below.

F1-score = 2 · Recall · Precision
Recall + Precision

(4.4)

32

CHAPTER 5
RESULTS

5.1 RQ1: Does the expansion of the dataset lead to enhanced

performance in vulnerability classification by large language

models?

The first question addresses whether extending the data can lead to stronger models capable of

categorizing a wider array of vulnerability types. This analysis seeks to determine the benefits of

extending the dataset by comparing F1 scores from models trained on both the original Okutan

dataset [29], results in Table 5.2 and a combined dataset with new annotations, results in Ta-

ble 5.1. This examination is key to understanding how the size of data influences the accuracy and

generalization ability of LLMs in categorizing software vulnerabilities.

Attack Theater

For Limited Remote vulnerabilities, the combined dataset shows a range of accuracies from 0.60

(BERT) to 0.79 (Llama 2), which, when compared to the results using only Ahmet et al.’s data,

indicates a notable decrease. Specifically, the original dataset alone resulted in higher accuracies

for Llama 2 at 0.89 and DeBERTa V3 at 0.87. In the Local attribute, the combined dataset’s

accuracies vary from 0.69 (Llama 2) to 0.81 (XLNet and DeBERTa V3), contrasting with the

original dataset’s higher accuracies, such as 0.91 for DistilBERT and 0.89 for BERT. This indicates

that the expanded dataset does not necessarily translate to improved performance and, in some

cases, may slightly hinder it.

The Remote attribute’s comparison further illustrates this trend, where the combined dataset

yields accuracies ranging from 0.76 (Llama 2) to 0.87 (DistilBERT). However, the original dataset

alone demonstrates superior performance, with accuracies reaching up to 0.95 for DistilBERT and

0.95 for DeBERTa V3. Lastly, the Physical vulnerabilities attribute presents a mixed picture.

The combined dataset shows high accuracies, particularly with DistilBERT and Llama 2 achieving

perfect scores of 1.00. Conversely, the original dataset’s results are more varied, with Llama 2 still

achieving a perfect score but other models like XLNet dropping to 0.44, indicating that in some

cases, the increased dataset size can significantly enhance model f1 score by providing a richer set

of examples for model training.

Context

For Application vulnerabilities, the expanded dataset results in Llama 2 achieving a significantly

higher f1 score of 0.98, compared to 0.85 using only the original data. In the Channel attribute, the

33

Table 5.1: F1-score values for each attribute using combined dataset.

Attributes BERT DistilBERT XLNet DeBERTa Llama 2 AVG

Limited Remote 0.60 0.63 0.62 0.71 0.79 0.67
Local 0.78 0.77 0.81 0.81 0.69 0.77
Remote 0.83 0.87 0.86 0.86 0.76 0.83
Physical 0.98 1.00 0.95 0.98 0.97 0.98

Application 0.91 0.90 0.91 0.92 0.98 0.92
Channel 0.86 0.85 0.87 0.83 0.77 0.84
Firmware 0.98 0.96 0.96 0.97 1.00 0.97
Guest OS 0.93 0.93 0.90 0.89 0.90 0.91
Host OS 0.88 0.85 0.88 0.91 0.80 0.86
Hypervisor 0.90 0.90 0.88 0.86 0.95 0.90
Phys. Hardware 0.85 0.90 0.88 0.91 0.92 0.89

Auth. Bypass 0.95 0.96 0.96 0.92 0.89 0.94
Code Execution 0.96 0.97 0.91 0.98 0.80 0.92
Context Escape 0.96 0.99 0.94 0.99 0.89 0.95
MitM 0.95 0.95 0.95 0.98 0.97 0.96
Trust Failure 0.96 0.95 0.97 0.94 0.90 0.94

Indirect Dis. 0.87 0.89 0.90 0.92 0.93 0.90
Privilege Esc. 0.84 0.86 0.86 0.85 0.77 0.84
Read 0.91 0.93 0.90 0.84 0.66 0.85
Resource Rem. 0.98 0.97 0.99 0.95 0.84 0.95
Service Int. 0.93 0.93 0.95 1.00 0.85 0.93
Write 0.97 0.95 0.95 0.91 0.56 0.87

ASLR 0.94 0.97 0.94 0.95 0.88 0.94
HPKP/HSTS 0.97 0.97 0.99 0.96 0.75 0.93
MFA 0.97 0.96 0.93 0.93 0.77 0.91
Phys. Security 0.97 0.99 0.97 0.97 0.95 0.97
Sandboxed 0.96 0.99 0.95 0.93 0.87 0.94

AVG F1 SCORE 0.91 0.92 0.91 0.91 0.85

34

Table 5.2: F1-score values for each attribute using only Okutan’s original dataset.

Attributes BERT DistilBERT XLNet DeBERTa Llama 2 AVG

Limited Remote 0.82 0.78 0.71 0.87 0.89 0.81
Local 0.89 0.91 0.78 0.86 0.88 0.86
Remote 0.94 0.96 0.94 0.95 0.89 0.93
Physical 0.89 0.95 0.44 0.95 1.00 0.82

Application 0.95 0.93 0.87 0.83 0.85 0.88
Channel 0.84 0.80 0.76 0.62 0.80 0.77
Firmware 0.94 0.96 0.96 0.96 1.00 0.96
Guest OS 0.91 0.87 0.85 0.87 0.83 0.86
Host OS 0.91 0.87 0.93 0.86 0.67 0.85
Hypervisor 1.00 1.00 0.97 0.90 0.93 0.96
Phys. Hardware 0.87 0.88 0.81 0.88 0.67 0.82

Auth. Bypass 0.95 0.89 0.86 0.90 1.00 0.92
Code Execution 1.00 1.00 0.97 0.95 0.97 0.98
Context Escape 0.97 0.97 0.97 0.88 0.91 0.94
MitM 1.00 1.00 0.98 0.95 1.00 0.99
Trust Failure 0.97 0.90 0.93 0.93 1.00 0.95

Indirect Dis. 1.00 1.00 1.00 0.97 0.92 0.98
Privilege Esc. 0.97 0.97 0.97 1.00 0.94 0.97
Read 0.93 0.98 0.94 0.86 0.65 0.87
Resource Rem. 1.00 1.00 0.97 0.96 0.86 0.96
Service Int. 1.00 1.00 1.00 0.94 0.95 0.98
Write 0.98 0.93 0.89 0.96 0.63 0.88

ASLR 0.98 0.93 0.98 0.97 0.98 0.96
HPKP/HSTS 0.97 0.97 0.97 0.98 0.97 0.97
MFA 0.96 0.92 0.92 0.89 0.92 0.92
Phys. Security 1.00 1.00 0.95 0.89 0.95 0.96
Sandboxed 0.96 0.96 0.96 0.93 0.96 0.96

AVG F1 SCORE 0.95 0.94 0.90 0.90 0.89

35

f1 score of models such as XLNet improves from 0.76 to 0.87 with the expanded dataset. However,

it’s worth noting that some models like DistilBERT see a slight decrease in f1 score, suggesting

variability in how different models adapt to the increased data size.

The Firmware attribute shows a consistent performance by Llama 2, achieving a perfect score

of 1.00 in both datasets. This consistency across datasets emphasizes the model’s robustness in

identifying firmware vulnerabilities, irrespective of the dataset size. For Guest OS vulnerabilities,

the expanded dataset brings slight improvements or maintains performance for most models, with

Llama 2’s f1 score increasing from 0.83 to 0.90.

The Host OS attribute sees a mixed impact, with BERT’s f1 score improving from 0.91 using

only Ahmet et al.’s data to 0.88 with the expanded dataset. In the Hypervisor vulnerabilities

classification, the original dataset sees a perfect score of 1.00 for both BERT and DistilBERT,

which slightly decreases with the expanded dataset. Lastly, Physical Hardware vulnerabilities

classification shows an improvement in accuracies for models like BERT and DistilBERT with the

expanded dataset.

Impact Method

Authentication Bypass sees a shift in performance. The expanded dataset shows high accuracies

with DistilBERT at 0.96 and Llama 2 slightly lower at 0.89. Interestingly, using only the original

dataset, Llama 2 achieves a perfect score of 1.00. The Code Execution vulnerabilities illustrate

a small difference with the original dataset alone, where BERT and DistilBERT both hit perfect

accuracies of 1.00. Compared to the expanded dataset’s highest f1 score of 0.98 by DeBERTa V3.

Context Escape classification reveals that the expanded dataset aids in achieving higher ac-

curacies for models like DistilBERT at 0.99. However, the original dataset still supports strong

performance, with all models achieving high f1 score, peaking at 0.97. Man-in-the-Middle vul-

nerabilities present a scenario where the original dataset enables perfect scores of 1.00 for BERT,

DistilBERT, and Llama 2, surpassing the expanded dataset’s highest f1 score of 0.98 by DeBERTa

V3. Similarly, Trust Failure shows the original dataset drives Llama 2 to achieve a perfect f1 score

of 1.00, whereas, in the expanded dataset, the highest f1 score is 0.97 by XLNet.

Logical Impact

The Indirect Disclosure sees a improvement in models trained on the original dataset, with BERT,

DistilBERT, and XLNet each achieving perfect scores of 1.00, significantly higher than the combined

dataset’s top score of 0.93 by Llama 2. For Privilege Escalation, the original dataset again shows

superior model performance, with DeBERTa V3 reaching a perfect f1 score of 1.00 and other

models like BERT and DistilBERT not far behind at 0.97. Compared to the combined dataset,

where accuracies peak at 0.86, the original dataset appears to offer a more concise representation

of Privilege Escalation vulnerabilities, facilitating better model training and classification.

36

In the Read attribute, models trained on the original dataset show strong performance, espe-

cially DistilBERT at 0.98, surpassing the combined dataset’s highest f1 score of 0.93 by BERT.

Similarly, resource Removal vulnerabilities demonstrate a significant advantage for models trained

on the original dataset, with BERT and DistilBERT achieving perfect scores of 1.00. In Service In-

terrupt, the original dataset approach perfect accuracies, with BERT and DistilBERT each scoring

1.00. Lastly, the Write attribute presents a scenario where the original dataset and the combined

dataset perform very closely, such as BERT’s 0.98 in the original dataset, compared to the combined

dataset’s best of 0.97 by BERT.

Mitigation

The ASLR (Address Space Layout Randomization) shows higher accuracies with BERT and XLNet

(0.98), compared to those trained on the combined dataset, with DistilBERT reaching 0.97 and

Llama 2 at 0.88. The HPKP/HSTS (HTTP Public Key Pinning/HTTP Strict Transport Security)

presents a scenario where models trained on both datasets achieve high accuracies, but the combined

dataset sees a slight dip for Llama 2 to 0.75.

In MultiFactor Authentication, the combined dataset maintains strong performance across most

models, with BERT and DistilBERT hitting 0.97 and 0.96, respectively, compared to the original

dataset’s performance, where accuracies like Llama 2’s reach 0.92. The Physical Security classi-

fications demonstrate that the combined dataset enables models to achieve high accuracies, with

DistilBERT and Physical Security both at 0.99. Likewise, models trained solely on the original

dataset, such as BERT, attain perfect scores of 1.00. Lastly, for Sandboxed environments, the

overall performance remains consistently high across both datasets. The accuracies across models

like DistilBERT at 0.99 (combined dataset) versus 0.96 (original dataset).

Average F1 Scores of Noun Groups Attributes

The extension of datasets generally resulted in varied performance across these different attributes.

For instance, in the Attack Theater attribute, more generalized attributes such as Limited Remote,

Local, and Remote exhibited notable performance decreases with augmented dataset scores of 0.67,

0.77, and 0.83 respectively, compared to the original dataset scores of 0.81, 0.86, and 0.93. This

suggests potential misalignment or the introduction of noise from the additional data within these

specific attributes.

Conversely, improvements were observed in areas requiring high levels of specificity such as

Firmware in the Context attribute and Physical Security in Mitigation, where F1 scores increased to

0.97. This enhancement suggests that the additional data included valuable and relevant examples,

enhancing the models’ abilities to accurately classify these complex vulnerabilities.

However, the Impact Method attribute displayed mixed results. While the attributes Code

Execution and Context Escape showed slight decreases in performance in the augmented dataset

37

with scores of 0.92 and 0.95, respectively, they did not match the original dataset’s scores of 0.98

and 0.94. This indicates that although the augmented data provided more diverse examples, it

might not have consistently enhanced the model’s ability to generalize across different vulnerability

contexts.

The Logical Impact attribute also demonstrated varied impacts. Some areas like Resource

Removal maintained robust performance with an F1 score of 0.95, but others such as Read and

Write underperformed with F1 scores of 0.85 and 0.87 compared to the original dataset’s scores of

0.87 and 0.88. These discrepancies underscore the challenges in dataset augmentation, where not

all additions uniformly benefit all types of attributes.

RQ1: Does the expansion of datasets lead to enhanced performance in

vulnerability classification by large language models?

The extension of datasets for fine-tuning LLMs in software vulnerability classification in-

corporates recent data from 2021 to 2023. This update aimed to capture a broader array

of vulnerabilities and reflect current cybersecurity trends. However, the new dataset did

not uniformly enhance model performance across the five noun groups studied, indicating

variability in the effectiveness of the added data. We conclude that the annotations’ quality,

provided by students, could have influenced the outcomes, highlighting the need for rigorous

quality control in data annotation. This study lays the groundwork for further exploration

into dataset extension to optimize model performance across a broader spectrum of software

vulnerabilities.

5.2 RQ2: How do large language models impact the effectiveness

of software vulnerability classification?

The second question seeks to evaluate the performance of LLMs. It explores the comparative

performance of large language models (LLMs) and conventional machine learning models in the

context of software vulnerability classification across five distinct vulnerability noun groups. The

comparative analysis draws on the results compiled in Table 5.1, which details the F1 scores achieved

by LLMs in our research with the combined dataset, and Table 5.3, presenting the outcomes from

the study by Okutan [29] using conventional machine learning models. By analyzing the differences

in F1 scores and performance patterns, this study aims to identify areas where LLMs either excel or

require further improvement in the classification and mitigation of various software vulnerabilities.

38

Table 5.3: Okutan’s F1-score values using entropy-based methods and conventional machine learn-
ing models.

Attributes KLD CE SVM NB DT RF Vote AVG

Limited Remote 0.91 0.91 0.79 0.75 0.87 0.67 0.88 0.83
Local 0.92 0.89 0.77 0.80 0.8 0.75 0.82 0.82
Remote 0.94 0.94 0.92 0.89 0.97 0.9 0.94 0.93
Physical 0.9 0.91 0.96 0.85 0.98 0.9 0.98 0.93

Application 0.80 0.79 0.84 0.74 0.7 0.68 0.87 0.77
Channel 0.76 0.78 0.82 0.69 0.82 0.7 0.9 0.78
Firmware 0.85 0.85 0.89 0.73 0.95 0.82 0.94 0.86
Guest OS 0.76 0.76 0.93 0.7 0.95 0.88 0.94 0.85
Host OS 0.88 0.88 0.84 0.76 0.76 0.81 0.84 0.82
Hypervisor 0.76 0.77 0.95 0.57 0.95 0.76 0.95 0.82
Phys. Hardware

Auth. Bypass 0.88 0.86 0.84 0.85 0.97 0.62 0.92 0.85
Code Execution 0.94 0.94 0.9 0.88 0.93 0.81 0.94 0.91
Context Escape 0.94 0.93 0.79 0.84 0.98 0.76 0.94 0.88
MitM 0.96 0.96 0.96 0.82 0.99 0.78 1.00 0.92
Trust Failure 0.91 0.9 0.67 0.84 0.92 0.39 0.93 0.79

Indirect Dis. 0.94 0.94 0.88 0.83 0.94 0.82 0.91 0.89
Privilege Esc. 0.78 0.78 0.88 0.71 0.88 0.82 0.87 0.82
Read 0.86 0.85 0.94 0.71 0.92 0.87 0.97 0.87
Resource Rem. 0.88 0.87 0.78 0.83 0.84 0.64 0.84 0.81
Service Int. 0.86 0.86 0.89 0.84 0.97 0.74 0.95 0.87
Write 0.83 0.82 0.95 0.76 0.94 0.88 0.96 0.88

ASLR 0.91 0.92 0.94 0.74 0.96 0.83 0.96 0.89
HPKP/HSTS 0.77 0.77 0.84 0.71 0.97 0.79 0.92 0.82
MFA 0.78 0.76 0.85 0.76 0.92 0.71 0.92 0.81
Phys. Security 0.89 0.88 0.92 0.78 0.96 0.85 0.96 0.89
Sandboxed 0.73 0.73 0.88 0.78 0.93 0.72 0.92 0.81

AVG F1 SCORE 0.86 0.86 0.87 0.78 0.91 0.78 0.92

39

5.2.1 RQ1.1: How do models perform when classifying 27 vulnerability at-

tributes?

This sub-question aims to compare different transform-based vs. conventional models in accu-

rately classifying software vulnerabilities attributes, providing a comprehensive overview of their

respective strengths and limitations in vulnerability classification.

For each of the 27 attributes:

Sum the F1 scores of the N models and divide by N to get the average F1 score.

Attack Theater

In the classification of software vulnerabilities, the performance of language model architectures

varies significantly across different vulnerability contexts. In the scenario of Limited Remote vul-

nerabilities, there is a notable discrepancy in F1 scores among models. BERT achieves a lower F1

score of 0.60, whereas Llama 2 reaches 0.79. However, both scores are below the benchmark F1 score

of 0.91 set by traditional models, such as KLD and CE. This comparison not only highlights the

superior precision of traditional models in this attribute but also illustrates the variability within

machine learning models, as evidenced by the Random Forest (RF) model’s F1 score of 0.67.

Transitioning to Local vulnerabilities, the F1 scores of advanced transformer models like XLNet

and DeBERTa V3 are competitive at 0.81, surpassing some traditional models. However, they

do not exceed the peak F1 score of 0.92 achieved by KLD. Notably, Llama 2 exhibits a lower

performance, with an F1 score of 0.69, indicating inconsistency in advancements across different

language models.

For Remote vulnerabilities, DistilBERT registers an F1 score of 0.87, demonstrating substantial

efficacy. Nonetheless, this is still outperformed by traditional models, where KLD and CE reach

F1 scores of 0.94, and Decision Tree (DT) models achieve a notably higher score of 0.97. This

underscores the ongoing relevance and superior capability of conventional models to discern nuances

in Remote vulnerabilities with higher accuracy.

In the Physical vulnerability attribute, DistilBERT markedly excels with a perfect F1 score of

1.00, surpassing the F1 scores of traditional models like DT and Vote, both at 0.98. This excep-

tional performance indicates a potential unique strength of language models in precisely identifying

Physical vulnerabilities, thereby challenging the dominance of conventional models in this area.

Context

In the Context noun group, Llama achieved remarkable f1 score in the Application and Firmware

attributes, reaching 0.98 and 1.00 respectively, significantly exceed the best-performing conventional

models, with Application vulnerabilities’ highest conventional f1 score being 0.87 by Vote and

Firmware’s at 0.95 by both DT and Vote. Conversely, in the Channel attribute, where the highest

40

LLM f1 score by XLNet is slightly below Vote’s 0.9, the data suggest areas where traditional models,

particularly ensemble methods, maintain competitive advantage.

The analysis extends to the Guest OS and Host OS attributes, where LLMs closely match or

slightly surpass the accuracies of conventional models. For Guest OS vulnerabilities, the LLMs,

particularly BERT and DistilBERT, achieve up to 0.93 f1 score, which is competitive with the 0.95

achieved by SVM and DT among conventional models. In the Host OS attribute, DeBERTa V3’s

performance at 0.91 marginally exceeds the conventional high of 0.88 by KLD and CE. Futher-

more, Hypervisor vulnerabilities further highlight the evolving capabilities of LLMs, with Llama 2

achieving an f1 score of 0.95, which aligns with the top performance among conventional models.

This attribute exemplifies the narrowing gap between the newest generations of language models

and established machine learning techniques, signaling a shift towards the increasing viability of

LLMs in accurately identifying and categorizing complex software vulnerabilities.

Impact Method

In the Impact Method noun group, the performance comparison between language models (LLMs)

and conventional models across five vulnerability attributes shows varied results. Starting with

the Authentication Bypass attribute, LLMs like DistilBERT and BERT achieve high F1 scores of

0.96 and 0.95, respectively. While these scores are close, they do not surpass the highest score

achieved by conventional models, which is 0.97 by the Decision Tree (DT) model. The lowest F1

score among conventional models is a 0.62 by the Random Forest (RF), underscoring a notable

disparity in their performance.

For Code Execution vulnerabilities, LLMs demonstrate robust performance, particularly De-

BERTa V3, which achieves an F1 score of 0.98. This score is higher than the best conventional

model score of 0.94, shared by KLD, CE, and Vote. In the Context Escape attribute, LLMs such

as DistilBERT and DeBERTa V3 reach remarkable F1 scores of 0.99, marginally exceeding the

conventional model’s highest score of 0.98 by DT.

In the attribute of Man-in-the-Middle vulnerabilities, the conventional Vote model achieves a

perfect score of 1.00, which slightly exceeds the highest LLM F1 scores of 0.98 by DeBERTa V3

and Llama 2. Lastly, in the Trust Failure attribute, LLMs like BERT and XLNet achieve scores

of 0.96 and 0.97, respectively, demonstrating their effectiveness. Among conventional models, DT

scores 0.92 and Vote achieves 0.93, indicating strong competition, although RF markedly lags with

an F1 score of 0.39.

Logical Impact

In the Logical Impact noun group, the evaluation is performed across various vulnerability classes

such as Indirect Disclosure, Privilege Escalation, Read, Resource Removal, Service Interrupt, and

Write. For Indirect Disclosure, LLMs, particularly Llama 2 with a 0.93 f1 score, approach the

41

benchmarks set by conventional models, where KLD and CE lead at 0.94. In the Privilege Escalation

attribute, LLMs exhibit a varied performance, with their highest f1 score being 0.86 by both

DistilBERT and XLNet. This is in contrast to the conventional models where SVM and DT reach

a higher f1 score of 0.88. Notably, Llama 2’s lower score of 0.77 points to the challenges LLMs face

in consistently outperforming traditional models in privilege escalation scenarios.

The Read vulnerability sees DistilBERT achieving a 0.93 f1 score, lower than the conventional

models’ highest f1 score of 0.97 by Vote. Resource Removal vulnerabilities showcase a strong

showing from LLMs, with XLNet’s 0.99 f1 score surpassing all conventional model performances,

with the closest being 0.88 by KLD and CE. This indicates a pronounced advantage of LLMs in

classifying vulnerabilities that lead to the removal of system resources, though Llama 2’s drop to

0.84 suggests not all LLMs are equally effective in this context.

Service Interrupt classification further highlights the potential of LLMs, with DeBERTa V3

achieving a perfect score of 1.00, outperforming the conventional high of 0.97 by DT. This demon-

strates LLMs’ superior understanding and classification capability for vulnerabilities that could

cause service interruptions, despite Llama 2’s lower f1 score of 0.85. In the Write attribute, LLMs

like BERT demonstrate strong capabilities with a 0.97 f1 score, outperforming the conventional

models’ highest f1 score of 0.96 by Vote.

Mitigation

In the Mitigation noun group, the comparison between large language models (LLMs) and con-

ventional machine learning (ML) models illustrates a trend where LLMs often outshine or closely

compete with the traditional models in identifying effective mitigation strategies for various vulner-

abilities. Starting with ASLR (Address Space Layout Randomization), LLMs such as DistilBERT

achieve a remarkable 0.97 f1 score, surpassing the conventional models’ best performance of 0.96

by DT and Vote.

For HPKP (HTTP Public Key Pinning)/HSTS (HTTP Strict Transport Security), LLMs dis-

play exceptional performance, with both BERT and DistilBERT hitting a 0.97 f1 score, and XLNet

even higher at 0.99. This exceeds the highest f1 score of 0.97 by DT among conventional models. In

MultiFactor Authentication, LLMs again demonstrate their prowess, with BERT and DistilBERT

achieving 0.97 and 0.96 accuracies, respectively. These scores are notably higher than the best

conventional model performance of 0.92 by both DT and Vote.

Physical Security classifications see LLMs like DistilBERT reaching a near-perfect f1 score of

0.99, closely matched by BERT and XLNet at 0.97. This performance is on par with or surpasses

the conventional models, where DT and Vote again lead with 0.96. Lastly, in classifying Sandboxed

environments, DistilBERT stands out with a 0.99 f1 score, significantly ahead of the conventional

models’ best score of 0.93 by DT.

This analysis underscores that while conventional models hold a slight edge in certain scenar-

42

ios within Attack Theater, LLMs demonstrate a robust capability across a broader spectrum of

vulnerability attributes, particularly in Context, Impact Method, and Mitigation groups. This

detailed evaluation provides essential insights for advancing the capabilities of LLMs in software

vulnerability classification and mitigation.

Average F1 Scores of Noun Group Attributes

In the Attack Theater noun group, LLMs underperformed compared to conventional models with

averages of 0.67 for Limited Remote, 0.77 for Local, and 0.83 for Remote vulnerabilities, against

higher averages of 0.83, 0.82, and 0.93 by Okutan [29], respectively. However, LLMs excelled in

several areas within the Context group, outperforming conventional models with a notable margin

in Application (0.92 vs. 0.77), Firmware (0.97 vs. 0.86), Guest OS (0.91 vs. 0.85), Host OS (0.86

vs. 0.82), and Hypervisor (0.90 vs. 0.82).

The Impact Method group also saw LLMs outshine conventional models in all attributes: Au-

thentication Bypass (0.94 vs. 0.85), Code Execution (0.92 vs. 0.91), Context Escape (0.95 vs.

0.88), Man-in-the-Middle (0.96 vs. 0.92), and Trust Failure (0.94 vs. 0.79). Similarly, in the

Logical Impact group, while performance was competitive, LLMs demonstrated superior results in

Resource Removal (0.95 vs. 0.81) and Service Interrupt (0.93 vs. 0.87), although they slightly

trailed in Read and Write attributes.

Lastly, the Mitigation group saw LLMs consistently outperform conventional models across all

attributes: ASLR (0.94 vs. 0.89), HPKP/HSTS (0.93 vs. 0.82), MultiFactor Authentication (0.91

vs. 0.81), Physical Security (0.97 vs. 0.89), and Sandboxed environments (0.94 vs. 0.81). This

overall superior performance in Mitigation underscores the potential of LLMs in evolving beyond

conventional models for identifying effective mitigation strategies.

5.2.2 RQ1.2: Which models have the best average f1 score across 27 vulnera-

bility attributes?

This sub-question aims to identify which individual models demonstrate the greatest overall effec-

tiveness in accurately classifying software vulnerabilities attributes.

For each of the N models:

Sum the F1 scores of the N attributes and divide by N to get the average F1 score.

In an analysis comparing the performance of large language models (LLMs) and conventional

machine learning models reported by Okutan [29], notable trends and capabilities of individual

models are revealed across various vulnerability attributes. The LLMs examined include BERT,

DistilBERT, XLNet, DeBERTa V3, and Llama 2, each demonstrating strengths in specific contexts.

DistilBERT emerged as the standout performer among the LLMs, showcasing consistent high

scores across multiple attributes with an impressive average of 0.97 in Mitigation and a strong

43

presence in the Impact Method group with a 0.96 average. BERT also showed strong performance,

particularly in Mitigation and Logical Impact, where its comprehensive capabilities are evident.

XLNet and DeBERTa V3 displayed solid and consistent results, often matching or surpassing their

LLM counterparts in many vulnerability attributes.

On the conventional models side, as reported by Okutan [29], the models include Kullback–Leibler

(KLD), Cross-Entropy (CE), Support Vector Machine (SVM), Naive Bayers (NB), Decision Tree

(DT), Random Forest (RF), and Vote. Among these, the Decision Tree (DT) and Ensemble Learn-

ing (Vote) models notably exhibited very competitive performances. Specifically, DT demonstrated

exceptional capability in the Impact Method group, achieving an average score of 0.96, and also

shone in the Mitigation group. The Vote model consistently provided strong scores across the board,

achieving the highest average in some attributes, such as a perfect 1.00 in Man-in-the-Middle within

the Impact Method group.

RQ2: How do large language models impact the effectiveness of software

vulnerability classification?

The large language models (LLMs), particularly BERT and DistilBERT, stood out as the top

performers in software vulnerability classification. BERT and DistilBERT achieved average

F1 scores of 0.95 and 0.94 respectively using only the Okutan dataset, while DistilBERT

achieved the highest performance with an average F1 score of 0.92 using the combined

dataset. XLNet and DeBERTa V3 also demonstrated strong performances, each closely

trailing with an average F1 score of 0.91 using the combined dataset. This underscores

the strong capabilities of these models in software vulnerability classification. In comparison

with Okutan’s study, where only two out of seven machine learning models and entropy-based

methods achieved an average F1 score higher than 0.90, LLMs outperformed the results of

the models in that study. However, it’s important to note that conventional Decision Tree

model and the Ensemble Learning technique also displayed highly competitive performances

with average F1 score of 0.91 and 0.92 respectively.

5.3 RQ3: What are the prevalent n-grams associated with each

vulnerability attribute?

The third question shifts focus to the linguistic aspects, exploring the specific n-grams that are

most prevalent and potentially indicative of different types of software vulnerabilities.

44

Attack Theater

The analysis of n-grams associated with software vulnerability category across various Attack The-

ater classifications reveals distinct linguistic patterns that align with each category’s unique access

requirements and attack vectors. In the Remote category, prevalent unigrams like ”remote” and

”chrome” and bigrams such as ”google chrome” and ”chrome prior” highlight vulnerabilities related

to internet-based threats, particularly in web browsers like Google Chrome, emphasizing the impor-

tance of version updates. The Local vulnerabilities shift focus towards internal system threats with

unigrams ”code” and ”execution,” and bigrams ”code execution” and ”arbitrary code,” indicating

risks from unauthorized code executions accessible via local interfaces such as consoles or SSH.

Limited Remote vulnerabilities, characterized by unigrams like ”device” and bigrams ”denial ser-

vice” and ”authentication bypass,” reflect concerns over network-constrained attacks that combine

elements of both remote and localized access. Lastly, the Physical category requires physical inter-

action, shown by dominant unigrams ”physical” and ”access,” and the bigram ”physical access,”

pointing to vulnerabilities that necessitate the attacker’s physical presence.

Table 5.4: Top 3 prevalent n-grams in Attack Theater noun group categories.
Category Unigrams Count Bigrams Count

Limited Rmt access 81 denial service 25
device 54 authentication bypass 19
prior 53 netgear devices 19

Local code 100 code execution 72
execution 97 arbitrary code 57
arbitrary 69 successful exploitation 35

Physical access 165 physical access 100
physical 142 mysql cluster 38
device 82 access device 27

Remote prior 156 google chrome 86
remote 118 chrome prior 75
chrome 96 html page 66

Context

The distribution of N-grams across different software contexts underscores specific vulnerability

concerns aligned with the functionality of each system layer. In Application, the frequent unigrams

”remote” and ”exploit” coupled with bigrams like ”denial service” and ”execute arbitrary” highlight

the vulnerability to external attacks and unauthorized actions, reflecting the widespread concern for

security in software applications that operate across diverse environments. The Channel category,

with unigrams such as ”channel” and ”information” and bigrams like ”information disclosure” and

”communication channel,” brings to light issues in data transmission channels, emphasizing the

45

potential for data breaches in logical communication setups, particularly where encryption and

protocol integrity are compromised.

Moving deeper into system layers, Firmware vulnerabilities are prominent, with a high occur-

rence of the unigram ”firmware” and bigrams such as ”firmware prior” and ”firmware version,”

pointing to the risks associated with outdated or unsecured firmware integral to the functioning of

critical devices. Contrastingly, Guest OS and Host OS showcase focused concerns, with ”guest os”

and ”issue fixed” being significant phrases, indicating vulnerabilities specific to virtualized environ-

ments and primary operating systems respectively. This delineates the differing levels of security

prioritization between isolated virtual operating systems and the broader host systems that sup-

port them. Hypervisor and Physical Hardware categories further this narrative; ”hypervisor” and

”hardware” as key unigrams and ”denial service” and ”successful attacks” as notable bigrams in

each category respectively emphasize the criticality of managing virtual resource allocation securely

and protecting physical components from direct attacks.

Table 5.5: Top 3 prevalent n-grams in Context noun group categories.
Category Unigrams Count Bigrams Count

Application remote 98 denial service 49
exploit 93 execute arbitrary 39
oracle 77 remote attackers 32

Channel channel 109 information disclosure 39
information 69 communication channel 33
issue 53 protection relays 32

Firmware firmware 288 firmware prior 75
prior 92 firmware version 63
version 75 series software 36

Guest OS guest 226 guest os 117
os 128 denial service 100
service 101 cause denial 72

Host OS issue 129 issue fixed 57
kernel 90 addressed improved 55
memory 73 issue addressed 41

Hypervisor hypervisor 130 denial service 61
guest 113 cause denial 46
service 65 guest os 32

Phys. Hardware hardware 112 mysql cluster 51
access 79 successful attacks 26
cluster 63 denial service 26

46

Impact Method

For Authentication Bypass noun group, prevalent terms such as ”authentication” and ”bypass” are

prominently discussed, underlining the security risks associated with attackers bypassing identity

verification systems to gain unauthorized access. This is particularly critical as it highlights the

frequent attempts to undermine security through deceptive means, making it a key area of concern

for maintaining strong authentication protocols. Similarly, Code Execution is frequently mentioned

with terms like ”code” and ”execution,” where bigrams such as ”arbitrary code” signify the serious

threats posed by attackers executing unauthorized code to compromise system integrity.

On another front, Context Escape uses ”sandbox” and ”escape,” with the common bigram

”sandbox escape,” pointing to vulnerabilities that enable attackers to move from restricted to less

controlled environments, exploiting these transitions to escalate privileges or access sensitive areas.

Man-in-the-Middle (MitM) and Trust Failure vulnerabilities are highlighted by terms like ”attack,”

”server,” ”key,” and ”encryption,” with relevant bigrams indicating the interception of communica-

tions and exploitation of trust mechanisms, such as ”sensitive information” and ”encryption key.”

These insights not only delineate the specific vulnerabilities but also emphasize the critical areas

where security efforts should be concentrated to mitigate the risks associated with each type of

impact method.

Table 5.6: Top 3 prevalent n-grams in Impact Method noun group categories.
Category Unigrams Count Bigrams Count

Auth. Bypass authentication 299 authentication bypass 172
bypass 217 bypass authentication 141
access 77 netgear devices 61

Code Execution code 267 code execution 172
execution 190 arbitrary code 141
arbitrary 53 execute arbitrary 61

Context Escape sandbox 198 sandbox escape 90
escape 129 google chrome 71
prior 85 html page 69

MitM attack 89 sensitive information 36
server 87 man middle 28
certificate 81 obtain sensitive 19

Trust Failure key 245 encryption key 40
encryption 134 sensitive information 19
keys 68 issue discovered 18

Logical Impact

The N-gram distribution within the Logical Impact noun group uncovers patterns tied to the sever-

ity of different impacts on system security. Indirect Disclosure is heavily characterized by terms like

47

”information” and ”disclosure,” reflecting the vulnerability that allows attackers to glean system

information indirectly, which might not involve direct data breaches but still poses substantial risks

to confidentiality. For Privilege Escalation, the prevalent use of ”privilege” and ”escalation” indi-

cates the threat of attackers gaining higher system permissions than authorized, leading potentially

to widespread system compromise.

Read and Write impacts are underscored by terms like ”read,” ”write,” ”access,” and ”files,”

with bigrams ”read write” and ”bounds write” suggesting unauthorized data access and modifica-

tion risks that breach data confidentiality and integrity. Resource Removal focuses on the terms

”files” and ”arbitrary,” indicating unauthorized data deletion threats. Lastly, Service Interrup-

tion is marked by ”service” and ”denial,” highlighting disruptions to service availability caused by

unauthorized actions, a critical aspect of maintaining operational reliability and trust in systems.

Table 5.7: Top 3 prevalent n-grams in Logical Impact noun group categories.
Category Unigrams Count Bigrams Count

Indirect Dis. information 270 information disclosure 178
discloure 197 execution privileges 45
needed 89 privileges needed 45

Privilege Esc. privilege 137 escalation privilege 99
escalation 125 local escalation 51
access 109 execution privileges 50

Read read 198 read write 49
access 120 information disclosure 38
files 92 arbitrary files 31

Resource Rem. files 182 arbitrary files 105
arbitrary 157 remote attackers 41
remote 98 attackers arbitrary 38

Service Int. service 179 denial service 150
denial 150 cause denial 61
cause 102 remote cause 30

Write write 198 read write 49
access 104 bounds write 44
file 102 possible bounds 38

Mitigation

In the mitigation strategies for software vulnerabilities, N-grams within each category highlight

the focused security measures employed to protect systems. ASLR (Address Space Layout Ran-

domization) is represented with unigrams like ”buffer” and ”overflow”, pointing to the mitigation

of memory corruption vulnerabilities through randomizing memory addresses, thus complicating

exploitation attempts like arbitrary code execution. This strategy is essential for protecting against

exploits that rely on predictable memory address knowledge. Similarly, HPKP/HSTS focuses on

48

enhancing web communication security, indicated by unigrams ”http” and ”request”, ensuring that

data transmitted over the web remains secure against interception and manipulation through strict

transport security protocols or public key pinning.

Multi-Factor Authentication (MFA) is highlighted by ”access” and ”credentials,” with bigrams

like ”access control,” emphasizing the role of multiple authentication layers in preventing unau-

thorized access. Physical Security underscores the importance of tangible security measures, with

”physical” and ”device” being prominent, and ”physical access” as a key bigram, which stresses

controlling physical access to devices to prevent direct manipulation or data theft. Lastly, the

Sandboxed environment, identified by ”sandbox” and ”java,” with bigrams such as ”java se,” rep-

resents the isolation of processes to minimize the risks of system-wide compromises from potentially

malicious code.

Table 5.8: Top 3 prevalent n-grams in Mitigation noun group categories.
Category Unigrams Count Bigrams Count

ASLR buffer 192 buffer overflow 133
overflow 161 arbitrary code 53
code 90 denial service 40

HPKP/HSTS http 257 http request 87
oracle 140 accessible data 51
request 138 successful attacks 43

MFA access 173 mysql server 25
credentials 153 access control 21
server 89 successful exploit 21

Physical Security access 192 physical access 88
physical 136 mysql cluster 51
device 110 physically proximate 38

Sandboxed sandbox 158 java se 85
java 137 google chrome 50
code 110 access device 48

49

RQ3: What are the prevalent n-grams associated with each vulnerability

attribute?

N-grams help reveal patterns and language correlations that might not be immediately ap-

parent. They can uncover subtle cues that aid in understanding the nature of vulnerabilities.

By analyzing n-grams, researchers and security practitioners can gain deeper insights into

how different vulnerabilities manifest in language, which can inform the development of more

targeted and effective mitigation strategies. Additionally, n-gram analysis can reveal evolv-

ing trends and new types of vulnerabilities, helping to stay ahead of emerging threats in

cybersecurity.

50

CHAPTER 6
THREATS TO VALIDITY

Internal Validity Threats

1. Student Annotators: The primary internal validity threat arises from the reliance on stu-

dent annotators, whose experience may not align with the complexity required for accurate

vulnerability assessment.

2. Bias and Inconsistencies: Potential bias and inconsistencies in annotations could skew the

data, impacting the reliability of the study.

To mitigate these issues, a rigorous training process was implemented based on established stan-

dards, and annotation sessions were limited to several hours per day to minimize fatigue. Fur-

thermore, to enhance the depth and accuracy of annotations, we implemented peer-review sessions

where disagreements could be discussed and resolved, ensuring a consensus was reached before fi-

nalizing the data. An additional proposed mitigation is periodic professional reviews to cross-verify

annotations with experts, providing an external validation layer to improve data quality.

External Validity Threats

1. Generalizability of a Small Dataset :A significant threat to external validity is the use of a

relatively small dataset, which may not adequately represent the broader spectrum of vulnera-

bilities encountered in more extensive systems. This limitation could affect the generalizability

of the research findings.

2. National Vulnerability Database: The NVD’s known issues, such as chronological inconsis-

tencies, incomplete coverage, duplication of vulnerabilities, and poorly documented data

fields—as highlighted by Ozment [31]—underscore the need for meticulous source verifica-

tion and data curation in our study to avoid these pitfalls.

The initial mitigation involved carefully selecting a diverse set of vulnerabilities to annotate,

aiming to cover different complexity levels and types. To further enhance the representativeness

of our study, it would be beneficial to expand the dataset to include vulnerabilities from various

sources beyond the NVD, thus broadening the scope and applicability of our findings. Consulting

with professional security analysts and integrating their feedback into the dataset could also help

bridge the gap between academic findings and practical applications.

51

Construct Validity Threats

1. Interpretation of the Vulnerability Description Ontology : The construct validity of this study

could be compromised by the potential discrepancies in how vulnerability characteristics are

interpreted under the VDO framework, particularly with the multi-label CVE approach.

2. Confidence Scoring System: The use of a scoring system to measure annotators’ confidence

might not capture the exact understanding required for certain vulnerabilities.

Regular updates to the annotation procedures have been made to address these issues, and a cross-

validation approach with cybersecurity experts is proposed to ensure the annotations accurately

reflect the CVE characteristics. Additionally, ongoing reviews and adaptations of the annotation

methodologies based on feedback and observed challenges will help maintain the precision of the

dataset. To further strengthen construct validity, conducting experiments with larger and more

diversified CVE sets in future studies could help verify and refine our findings.

52

CHAPTER 7
CONCLUSION

Our study provides a comprehensive analysis of the impact of Large Language Models (LLMs)

on software vulnerability classification, along with the effectiveness of dataset expansion.

1. Firstly, our findings suggest that while the expansion of the dataset aimed to capture a

broader array of vulnerabilities, the added data did not uniformly enhance model performance,

indicating the critical role of annotation quality.

2. Secondly, LLMs, particularly BERT and DistilBERT, stood out as the top performers in soft-

ware vulnerability classification. XLNet and DeBERTa V3 also demonstrated strong perfor-

mances, underscoring the capabilities of these models in software vulnerability classification.

In comparison with Okutan’s study, LLMs outperformed the results of the models in that

study. However, we must note that the conventional Decision Tree model and the Ensemble

Learning technique also displayed highly competitive performances.

3. Lastly, n-grams analysis revealed patterns associated with vulnerability attributes, offering

insights for targeted mitigation strategies and staying ahead of emerging threats.

These findings highlight the importance of not only applying advanced machine learning tech-

niques but also maintaining rigorous quality control in data annotation to optimize the performance

of models used in software vulnerability classification. This study lays the groundwork for further

research into dataset extension and the integration of LLMs to refine the processes of vulnerability

assessment in the field of cybersecurity.

53

BIBLIOGRAPHY

[1] Thamali Madhushani Adhikari and Yan Wu. Classifying software vulnerabilities by using

the bugs framework. 2020 8th International Symposium on Digital Forensics and Security

(ISDFS), pages 1–6, 2020.

[2] Catarina Araujo. Source code and data for software vulnerability classifica-

tion. Online, April 2024. Available online at https://github.com/acatarinaoaraujo/

software-vulnerability-classification/tree/main. Accessed: 2024-04-14.

[3] Harold Booth, Doug Rike, and Gregory A. Witte. The national vulnerability database (nvd):

Overview. technical report. National Institute of Standards and Technology (NIST), 2013.

[4] Harold Booth and Christopher Turner. Draft nistir 8138, vulnerability description ontology

(vdo). technical report. National Institute of Standards and Technology (NIST), 2016.

[5] Jean Carletta. Assessing agreement on classification tasks: the kappa statistic. Comput.

Linguist., page 249–254, June 1996.

[6] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learning based

vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering, pages

3280–3296, 2020.

[7] Qiuyuan Chen, Lingfeng Bao, Li Li, Xin Xia, and Liang Cai. Categorizing and predicting in-

valid vulnerabilities on common vulnerabilities and exposures. 2018 25th Asia-Pacific Software

Engineering Conference (APSEC), pages 345–354, 2018.

[8] Yang Chen, Andrew E. Santosa, Ang Ming Yi, Abhishek Sharma, Asankhaya Sharma, and

David Lo. A machine learning approach for vulnerability curation. 2020 IEEE/ACM 17th

International Conference on Mining Software Repositories (MSR), pages 32–42, 2020.

[9] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra: Pre-

training text encoders as discriminators rather than generators. ICLR, 2020.

[10] Kelley Dempsey, Paul Eavy, George Moore, and Eduardo Takamura. Automation support

for security control assessments: Software vulnerability management. National Institute of

Standards and Technology (NIST), 2020.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. North American Chapter of the

Association for Computational Linguistics, 2019.

54

[12] Michael Fu and Chakkrit Tantithamthavorn. Linevul: A transformer-based line-level vul-

nerability prediction. 2022 IEEE/ACM 19th International Conference on Mining Software

Repositories (MSR), pages 608–620, 2022.

[13] Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and Chao Zhang. How far have we gone in

vulnerability detection using large language models. 2023.

[14] Danielle Gonzalez, Holly Hastings, and Mehdi Mirakhorli. Automated characterization of

software vulnerabilities. 2019 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 135–139, 2019.

[15] Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng. Learning

to predict severity of software vulnerability using only vulnerability description. 2017 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pages 125–136,

2017.

[16] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-

style pre-training with gradient-disentangled embedding sharing. 2021.

[17] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced

bert with disentangled attention. International Conference on Learning Representations, 2021.

[18] Guoyan Huang, Yazhou Li, Qian Wang, Jiadong Ren, Yongqiang Cheng, and Xiaolin Zhao.

Automatic classification method for software vulnerability based on deep neural network. IEEE

Access, 7:28291–28298, 2019.

[19] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves Le Traon, and

Mark Harman. The importance of accounting for real-world labelling when predicting soft-

ware vulnerabilities. Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, page

695–705, 2019.

[20] Klaus Krippendorff. Reliability in content analysis: Some common misconceptions and rec-

ommendations. Human Communication Research, 30:411–433, 2004.

[21] David Last. Using historical software vulnerability data to forecast future vulnerabilities. 2015

Resilience Week (RWS), pages 1–7, 2015.

[22] Z. Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and

Jialai Wang. Sysevr: A framework for using deep learning to detect software vulnerabilities.

IEEE Transactions on Dependable and Secure Computing, pages 2244–2258, 2018.

55

[23] Z. Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and

Jialai Wang. Vuldeelocator: A deep learning-based fine-grained vulnerability detector. IEEE

Transactions on Dependable and Secure Computing, pages 2821–2837, 2020.

[24] Z. Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi

Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. 2018.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert

pretraining approach. 2019.

[26] Fabio Massacci and Hung Nguyen. Which is the right source for vulnerability studies? an

empirical analysis on mozilla firefox. 6th International Workshop on Security Measurements

and Metrics, MetriSec 2010, August 2010.

[27] Alejandro Mazuera-Rozo, Anamaria Mojica-Hanke, Mario Linares-Vásquez, and Gabriele

Bavota. Shallow or deep? an empirical study on detecting vulnerabilities using deep learn-

ing. IEEE/ACM 29th International Conference on Program Comprehension (ICPC), pages

276–287, 2021.

[28] The Hacker News. Researchers discover lg smart tv vulnerabilities allowing root ac-

cess. Online, April 2024. Available online at https://thehackernews.com/2024/04/

researchers-discover-lg-smart-tv.html. Accessed: 2024-04-14.

[29] Ahmet Okutan, Peter Mell, Mehdi Mirakhorli, Igor Khokhlov, Joanna C. S. Santos, Danielle

Gonzalez, and Steven Simmons. Empirical validation of automated vulnerability curation and

characterization. IEEE Transactions on Software Engineering, 49(5):3241–3260, 2023.

[30] Marwan Omar and Darrell Burrell. From text to threats: A language model approach to

software vulnerability detection. International Journal of Mathematics and Computer in En-

gineering, 2023.

[31] Andy Ozment. Vulnerability discovery software security. University of Cambridge: Cambridge

University Press, 2007.

[32] Rebecca Passonneau. Computing reliability for co-reference annotation. University of Cam-

bridge: Cambridge University Press, 2004.

[33] Alec Radford and Karthik Narasimhan. Improving language understanding by generative

pre-training. 2018.

[34] Ernesto Russo, Andrea Di Sorbo, Corrado Aaron Visaggio, and Gerardo Canfora. Summariz-

ing vulnerabilities’ descriptions to support experts during vulnerability assessment activities.

Journal of Systems and Software, 156, June 2019.

56

[35] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled

version of bert: smaller, faster, cheaper and lighter. 2019.

[36] Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. An empirical study

of deep learning models for vulnerability detection. Proceedings of the 45th International

Conference on Software Engineering, page 2237–2248, 2023.

[37] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef Pieprzyk,

and Surya Nepal. Transformer-based language models for software vulnerability detection.

Proceedings of the 38th Annual Computer Security Applications Conference, page 481–496,

2022.

[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas

Blecher, Cristian Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy

Fu, Wenyin Fu, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.

2023.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information

Processing Systems, pages 5998–6008, 2017.

[40] Dumidu Wijayasekara, Milos Manic, and Miles McQueen. Vulnerability identification and clas-

sification via text mining bug databases. Proceedings, IECON 2014 - 40th Annual Conference

of the IEEE Industrial Electronics Society, pages 3612–3618, October 2014.

[41] Mark Williams, Roberto Camacho Barranco, Sheikh Motahar Naim, Sumi Dey, M. Hossain,

and Monika Akbar. A vulnerability analysis and prediction framework. Computers Security,

92:101751, February 2020.

[42] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and

Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding. Neural

Information Processing Systems, 2019.

[43] Su Zhang, Xinming Ou, and Doina Caragea. Predicting cyber risks through national vulner-

ability database. Information Security Journal: A Global Perspective, 24(9):1–13, November

2015.

[44] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: effective

vulnerability identification by learning comprehensive program semantics via graph neural

networks. Proceedings of the 33rd International Conference on Neural Information Processing

Systems, 2019.

57

[45] Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. Searching for a needle in a

haystack: Predicting security vulnerabilities for windows vista. ICST 2010 - 3rd International

Conference on Software Testing, Verification and Validation, pages 421–428, January 2010.

58

